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SOME RESULTS ON A SUBCLASS OF HARMONIC MAPPINGS OF
ORDER ALPHA

D.VAROL', M.AYDOGAN?, S. OWA? §

ABSTRACT. Let Sy be the class of harmonic mappings defined by

Su = {f: h(z)+ g(z) | h(z) = z+Zanz",g(z) = bleranzn,ln < 1}
n=2

n=2

where h(z) and g(z) are analytic. Additionally

zh'(2) —z2g'(z)  1—bs ‘1—E 1—by
h(z) + g(z) 1+bi| [1+b 1+by
In the present work, by considering the analyticity of the functions defined by R. M.
Robinson [7], we discuss the applications to the harmonic mappings.

f(z) € Su(a) &

—a, zeU, 0<a<
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1. INTRODUCTION

Let U = {z| |z| < 1} be the open unit disc in the complex plane C. A complex-valued
harmonic function f : U — C has the representation

f=h(z)+9(2) (1)

where h(z) and g(z) are analytic and have the following power series expansion,

h(z) = i anz",
n=0

g9(z) = anz", zelu
n=0

where ay,, b, € C, n=0,1,2,..., choose i.e, by = 0 so the representation (1) is unique in
U and is called the canonical representation of f.
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For the univalent and sense-preserving harmonic mapping f in U, it is convenient to
make further normalization (without loss of generality), h(0) = 0 (i.e. , ap = 0) and
R'(0) =1 (i.e. , a3 = 1). The family of such functions f is denoted by Sy [1] . The
family of all functions f € Sy with the additional property that ¢’(0) = 0 (i.e. , by = 0)
is denoted by S% [1] . Observe that the classical family of univalent functions S consists
of all functions f € SY such that g(z) = 0. Thus it is clear that S € S% C Sy [1] .

Let Q be the family of functions ¢(z) regular in I/ and satisfying the conditions ¢(0) = 0,
|p(2)] < 1forall zeU.

Next, for arbitrary fixed real numbers A, B, —1 < A < 1, —1 < B < A denoted by
P(A, B), the family of functions p(z) = 1+ p1z +p22? + ... regular in U and such that p(z)
is in P(A, B)

14+ Ag(2)

p(z) = HTgb(z)’

(2)
for some function ¢(z) € Q and every z € Y. This class was introduced by Janowski W. [5].

Next, let 51(2) = 2z 4+ c22? + c32° + ... and s3(2) = 2z + d22? + d323 + ... be regular in
U. If there exists ¢(z) € w such that s1(z) = s2(¢(z)) for all z € U, then we say that s1(z)
is subordinated to sa(z) and denoted by s1(2) < s2(z) and S1(U) C S2(U) .

Finally, let f = h(z) + g(2) be an element of Sy. If f satisfies the condition

9 rgf(re'?)) = ReZ=—2L 227
ae(Agf( ) =R ENe >0

then f is called harmonic starlike function. The class of such functions is denoted by S7.

Also let f = h(z) + g(z) be an element of Sy. If f satisfies the condition

9 0 ‘ z(zh'(2)) —W
(= (Argf(re'))) = Re —
( ( gf( ))) ( Zh/(Z)+Zg/(Z) ) >O

then f is called convex harmonic function.The class of convex harmonic function is
denoted by Sgc¢.
In this paper we will investigate the following subclass of harmonic mappings

S(e) = {f = h(z) +9(2)]|

I

e
1+0b;

zh'(2) —29'(2) 1—by

h(z)+g(z) 1+b
1—b;
145

zEM,O§a<‘

} (3)

For this investigation we will use the following lemma.

Lemma 1.1. ([5]) Let ¢(z) be regular in the open unit disc U with ¢(0) = 0. Then if ¢(z)
attains its mazimum value on the circle |z| = r at zg, then we can write zo.¢'(20) = k¢(20)
where k is real and k > 1.
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2. MAIN RESULTS

Theorem 2.1. Let f = h(z) + g(z) € Sy (a) with

h(z) =z + f: 2"
and -
9(z) = ibnz”, (b = 0)
_If f(2) satisfies "
i((n—a)\anH(Wr?—a)\bnl)Sl—a (4)
o

for some a (0 <« < 1), then f(z) € Su(a).
Proof. Since f(z) € Sy («) is equivalent to

() — 29 )
b))
we have to show that the inequality (4) implies that

|2h'(2) = h(2) = (29'(2) + g(2)] < (1 = @) h(2) + g(2)].

-1ll<l—-0a, (z€U)

It follows that

(1= a)lh(2) +g(2)] = |2/ (2) = h(2) = (29 () + g(2))| = (1~ @

o 007
) z—l—Zanz"—i—anén
n=2 n=2

oo

o
- Z(n —Dapz" — Z(n + 1)b,z"

n=2 n=2

o0 oo —
n—1 —n— 1

(1— )|z 1+Zan2 —i—Zb |Z(n Da,z" Zn-i—l z|
n=2 n=2
o

1+Zanz” 1+Zb z"" 1Z

12
z

\z|{1—a Z(n—lanz in—i—lbf
n=2

> |z|{ (1-a) (1—Z|an||zr” ! Zw [Fi ) 2
|

- (Z(n = Dan|le["™" + Z(n + 1)|bn|!Z|”_1>

}

n=2 n=2

n=2 n=2

> \Zl{(l —a) =Y ((n—a)lan| + (n+2 - a)\bnl)}-

n=2

= \ZI{(l —a) =Y (n—a)lalz["t =Y (n+2- a)lanZI"l}

Therefore, if the inequality (4) holds true, then we have that

|2k (2) = h(2) = (29'(2) + 9(2))] < (1 = @) h(2) + g(2)]
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which implies that f(z) € Sy (a)

]
Corollary 2.1. Let f(z) satisfies
[e.e]
Y (mlan] + (n+2)[ba]) < 1
n=2
then f(z) € Su(0).
Proof. If we take & = 0 in Theorem 2.1, then we have the result. O
Definition 2.1. f(z) € Cu(a) & |h(2) —¢'(z) — (1 = b1)| < [1 = b1| — o,
z €U for some o, (0 <a <|1—b1]).
Theorem 2.2. If f = h(z) + g(z) satisfies
> n(lan| + ba]) < 1= b1] — @ (5)
n=2
for some a, (0 < a < |1 —b1|), then f(2) € Cg(a).
Proof. We note that
W(z)— () — (1— E)‘ =14+ nage = = b - 14y
n=2 n=2
= Znanz"_l — an 7"
n=2 n=2
00 5 n—1
— an”_l (an —b, <> ) |
n=2 o
00 e n—1
< \Z|Zn an — by, (z)
n=2
< || Zn(\an] + |bnl)
n=2
< Zn(\an] + [bnl)
n=2
O
Corollary 2.2. If f = h(z) + g(z) satisfies
> nllan] + [ba]) < 1= bal,
n=2
then f(z) € Cu(0).
Proof. 1f we take & = 0 in Theorem 2.2, we have the result. O

Theorem 2.3. f = h(z) + g(z) € Cu(0) with argay, = argb, = —nn forn =2,3,4,...,
then
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e}

Zn|an—bn| <1-—Reb) —«a (6)

n=2
Proof. In Definition 2.3, we know that f(z) € Cy(«) satisfies
Re(W(2) —¢'(2)) >a, z€elU

with 0 < a < |1 —by].
Since arga, = argb, = —nm, we have that

Re(h (2) — ¢'(2)) = Re(1 + Z na, 2"t — by — Z nb,z" 1)
n=2

n=2
=1— Reb; + Re(z n(an — bp)2" 1)
n=2
=1— Reb; + Re(z nlay — byle” "2 1)
n=2
>«
for all z € U. ‘
Let us consider a point z = |z|e¢'™. Then we have that
Re(l(z) — g/(2)) = 1 — Reby + Re(D_ nlay — byl|z["'e™™)
n=2
=1— Reb; — Zn\an — by ]2|" !
n=2

>

for |z| > 1. Therefore, letting |z| — 1, we see that

1 — Reby — Zn|an —by| =«
n=2
for f(z) € Cg(«). This completes the proof of the theorem. O

Corollary 2.3. If f = h(z)+g(z) € Cy(0) with arga, = argb, = —nm forn =2,3,4,...
, then

o0

Zn|an — by < 1— Reb;.
n=2
Proof. 1f we take & = 0 in Theorem 2.3, we have the result. g

Corollary 2.4. If f = h(z)+g(z) € Cy(a) with arga, = argb, = —nw forn =2,3,4,...,
then

1
1—Reby —a), n=234,...

—b <=
|an n|\n(

Proof. 1t is a simple consequence of Theorem 2.3. ]
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