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A FITTED NUMERICAL TECHNIQUE FOR SINGULARLY

PERTURBED DELAY DIFFERENTIAL EQUATIONS WITH

INTEGRAL BOUNDARY CONDITION

M. A. AYELE1∗, A. A.E TIRUNEH1, G. A. DERESE1, §

Abstract. In this paper, we present a fitted numerical scheme for singularly perturbed
delay differential equations with integral boundary conditions. To develop the scheme,
the exact and approximate rules of integration with finite difference approximations of
the first derivative are used. In the developed scheme, a fitting factor is introduced whose
value is evaluated from the theory of singular perturbation. The Runge–Kutta method of
order four is used to solve the reduced problem, and for the integral boundary condition,
Composite Simpson’s rule of integration is applied. The proposed method is shown to
be second-order convergent. Numerical illustrations for various values of perturbation
parameters are presented to validate the proposed method. The numerical results clearly
show the high accuracy and order of convergence of the proposed scheme as compared
to some of the results available in the literature.
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1. Introduction

In real-world models, we frequently run into problems with small parameters multiplying
the highest-order derivative terms, involving at least one shift term; we call them singularly
perturbed delay differential equations. Such problems arise frequently in the mathematical
modeling of diverse physical and biological phenomena. The delay terms in the models
enable us to include some past behavior to get more realistic models for the field. The
delay or lag represents the incubation period, gestation time, transport delays, etc.[1].

Because of the appearance of small perturbation parameter, the solution of these prob-
lems have a multi-scale character, such as there are thin transition layer(s) where the
solution varies very rapidly, while the solution behaves regularly and varies slowly away
from the layer(s). This leads to boundary and/or interior layer(s) in the solution of the
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problems. For more details on the analytical as well as the numerical solution of these
problems, one can refer [2, 3, 4]. Because of the presence of boundary and/or interior
layers in the solution of singularly perturbed differential equations, standard numerical
methods for solving such problems can be difficult and fail to produce accurate results for
small values of the perturbation parameter ε. As a result, appropriate numerical methods
that are uniformly convergent with respect to ε must be developed.

Boundary value problems with integral boundary conditions in which a small parame-
ter multiplies the highest order derivative are called singularly perturbed problems with
integral boundary conditions. Such types of problems constitute a very interesting and
important class of problems. These problems have been used to describe many phenom-
ena in the area of science and engineering, such as heat conduction, underground water,
oceanography, population dynamics, cellular systems, meteorology, plasma physics, and
the blood flow models, etc.,for further applications, one can refer to [5, 6, 7] and the refer-
ences therein. In addition to this, for a discussion of existence and uniqueness results and
for further applications of problems with integral boundary conditions see [8, 9, 10, 11]
and the references therein. From these problems, if at least one delay term is present, we
call it a singularly perturbed delay differential equation(SPDDE) with integral boundary
condition.

There is a lot of literature available on studies of singularly perturbed differential
equations with non-integral initial or boundary conditions. A number of scholars have
studied the numerical solutions to singularly perturbed differential equations with non-
integral initial or boundary conditions. Among those are some recent studies, such as
[12, 13, 14, 15, 16]. However, studies of singularly perturbed second order delay differ-
ential equations with integral boundary conditions have not been satisfactorily studied.
These are some studies conducted on SPDDE with integral boundary condition. In [17],
the authors presented a finite difference scheme with an appropriate piecewise Shishkin
type mesh, which is a first order convergent scheme. For a similar problem, in [18], the
authors have given an accelerated fitted finite difference method on uniform mesh and a
Richardson extrapolation technique has been used to enhance the order of convergence
from first order convergent to second order convergent. Also in [7], the authors suggest
a scheme based on the basis of B-spline functions on a piecewise uniform to the problem
stated in [17].

Motivated by the above work, we have designed an ε-uniform numerical scheme for
SPDDE with integral boundary condition, using the exact and approximate rule of in-
tegration with finite difference approximations of the first derivative. In the developed
scheme, a fitting factor is introduced whose value is evaluated from the theory of singular
perturbation. The Runge–Kutta method of order four is used to solve the reduced prob-
lem, and for the integral boundary condition, Composite Simpson’s rule of integration is
applied.

Notation : Throughout the analysis, C is generic positive constant which is inde-
pendent of the perturbation parameter ε and number of mesh points N . We assume
that Ω = [0, 2],Ω = (0, 2),Ω1 = (0, 1),Ω2 = (1, 2), Ω∗ = Ω1 ∪ Ω2, Ck is the set of k
times continously differentiable function in Ω, ||u||Ω = Sup

x∈Ω
|u(x)|, K is differential oper-

ator and, L,L1 and L2 are the linear operator associated to the domain Ω,Ω1 and Ω2,
respectively.
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2. Statement of the problem

We consider the following SPDDE with integral boundary condition [17],

− εu′′(x) + a(x)u′(x) + b(x)u(x) + c(x)u(x− 1) = f(x), x ∈ Ω,

u(x) = φ(x), x ∈ [−1, 0],

Ku(2) = u(2)− ε
∫ 2

0
g(x)u(x)dx = l,

(1)

where φ(x) is sufficiently smooth on [−1, 0]. For all x ∈ Ω, it is assumed that sufficient
smooth functions a(x), b(x) and c(x) satisfy a(x) ≥ α > 0, b(x) ≥ β ≥ 0, c(x) ≤ γ ≤ 0 and
β + γ ≥ 0.

Furthermore, g(x) is non negative and monotonic with
∫ 2

0 g(x)dx < 1. The above as-

sumptions ensure that u ∈ X = C0(Ω) ∩ C1(Ω) ∩ C2(Ω1 ∪ Ω2) [17].
When the delay term is o(ε), most of the numerical algorithms use Taylor series ap-

proximation for a priori estimation of the retarded term but this fails when the delay term
is O(ε).

The problem (1) is equivalent to

Lu(x) = F (x), (2)

where

Lu(x) =


L1u(x) = −εu′′(x) + a(x)u′(x) + b(x)u(x), x ∈ Ω1,

L2u(x) = −εu′′(x) + a(x)u′(x) + b(x)u(x)

+ c(x)u(x− 1), x ∈ Ω2.

(3)

F (x) =

{
f(x)− c(x)φ(x− 1),x ∈ Ω1,

f(x), x ∈ Ω2,
(4)

with boundary conditions

u(x) = φ(x), x ∈ [−1, 0],

u(1−) = u(1+), u′(1−) = u′(1+),

Ku(2) = u(2)− ε
∫ 2

0
g(x)u(x)dx = l.

In general, for ε near 0, the solution of the problem (1) has an interior layer and a bound-
ary layer [7].

3. Analytical Results

Now, we establish some asymptotic estimates for u(x) which are used for the analysis
of the parameter-uniform convergence.

Lemma 3.1 (Maximum Principle). Let ψ(x) be any function in X such that ψ(0) ≥
0,Kψ(2) ≥ 0,L1ψ(x) ≥ 0, ∀x ∈ Ω1,L2ψ(x) ≥ 0,∀x ∈ Ω2, and [ψ′](1) ≤ 0 then ψ(x) ≥
0, ∀x ∈ Ω.

Proof. Define a test function

s(x) =

{
1
8 + x

2 , x ∈ [0, 1],
3
8 + x

4 , x ∈ [1, 2].
(5)
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Note that s(x) > 0, ∀x ∈ Ω,Ls(x) > 0, ∀x ∈ (Ω1∪Ω2), s(0) > 0,Ks(2) > 0 and [s′](1) <
0. Let

µ = max

{
−ψ(x)

s(x)
: x ∈ Ω

}
.

Then, there exists x0 ∈ Ω such that ψ(x0) + µs(x0) = 0 and ψ(x) + µs(x) ≥ 0,∀x ∈ Ω.
Therefore, the function ψ(x) + µs(x) attains its minimum at x = x0. It is easy to observe
that for each x ∈ Ω, ψ(x) ≥ 0 if µ ≤ 0. Suppose the theorem does not hold true, then
µ > 0.
Case-1 x0 = 0,

(ψ + µs)(0) = ψ(0) + µs(0) = 0,

this contradict with (ψ + µs)(0) > 0, since ψ(0) ≥ 0, s(0) > 0 and µ > 0.
Case-2 x0 ∈ Ω1,

L1(ψ + µs)(x0) = −ε(ψ + µs)′′(x0) + a(x0)(ψ + µs)′(x0) + b(x0)(ψ + µs)(x0) ≤ 0,

this contradict with L1(ψ + µs)(x0) = L1ψ(x0) + µL1s(x0) > 0, since L1ψ(x0) ≥ 0 and
L1s(x0) > 0 and µ > 0.
Case-3 x0 = 1,

[(ψ + µs)′](1) ≥ 0,

this contradict with [(ψ + µs)′](1) < 0,since [ψ′](1) ≤ 0, [s′](1) < 0 and µ > 0.
Case-4 x0 ∈ Ω2,

L(ψ + µs)(x0) = −ε(ψ + µs)′′(x0) + a(x0)(ψ + µs)′(x0)
+b(x0)(ψ + µs)(x0) + c(x0)(ψ + µs)(x0 − 1) ≤ 0,

this contradict with L1(ψ + µs)(x0) = L1ψ(x0) + µL1s(x0) > 0, since L1ψ(x0) ≥ 0 and
L1s(x0) > 0 and µ > 0.
Case-5 x0 = 2,

(ψ + µs)(2)− ε
∫ 2

0
g(x)(ψ + µs)(x)dx ≤ 0,

this contradict with K(ψ + µs)(2) > 0, since Kψ(2) ≥ 0, Ks(2) ≥ 0 and µ > 0. It is clear
that we arrived at a contradiction in all cases. Therefore, µ > 0 is not possible. �

Lemma 3.2 (Stability result). The solution u(x) of the problem(1), satisfies the bound:

||u(x)|| ≤ C1 max

{
|u(0)|, |Ku(2)|, sup

x∈Ω∗
|Lu(x)|

}
, x ∈ Ω.

Proof. This theorem can be proved by using (Lemma 3.1) and the barrier function

ϕ+ = CMs(x)+u(x), x ∈ Ω, where M = max

{
|u(0)|, |Ku(2)|, sup

x∈Ω∗
|Lu(x)|

}
,

s(x) is the test function as in (Lemma 3.1). �

Lemma 3.3. The derivatives of the solution u(x) of (1) satisfies the following bound:

||u(k)(x)|| ≤ Cε−k, for k = 1, 2, 3.

Proof. Let x ∈ (0, 1) and let I = (c, c + η) be a neighborhood of x, where c be a positive
constant chosen so that x ∈ I and I ⊂ (0, 1), and η > ε is a constant then by mean value
theorem there exist a point ζ ∈ I, such that

u′(ζ) =
u(c+ η)− u(c)

η
.
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Using the fact that the maximum norm of a function is always greater than the value of
the function over the domain. From this we can get the relation

η||u′(ζ)|| ≤ 2||u||. (6)

To bound u′(x) on the interval Ω1, we consider

L1u(x) = −εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x)− c(x)φ(x− 1). (7)

Integrating equation(7) from ζ to x on both sides, we have

−ε(u′(x)− u′(ζ)) = −[a(x)u(x)− a(ζ)u(ζ)] +

∫ x

ζ
a′(x)u(x)d(x)

−
∫ x

ζ
b(x)u(x)dx+

∫ x

ζ
[f(x)− c(x)φ(x− 1)]dx.

(8)

Therefore,

ε|u′(x)| ≤ ε|u′(ζ)|+ (2||a||+ ||a′|| |x− ζ|)||u||
+ ||b|| ||u|| |x− ζ|+ ||f(x)− c(x)φ(x− 1)|| |x− ζ|.

(9)

Taking the inequality (6) and using the fact |x − ζ| < η, and Lemma 3.2, then from
equation (9) and Lemma 3.2 we obtain

||u′(x)|| ≤ Cε−1,

where C is a positive constant independent of ε,such that

C = (2+2||a||+||a′||+η||b||)(C1max

{
|u(0)|, |Ku(2)|, sup

x∈Ω∗
|Lu(x)|

}
)+η||f(x)−c(x)φ(x−1)||.

By similar argument we can bound u′(x) on Ω2. The bound for ||u′′|| and ||u′′′|| can be
obtained similarly. �

Theorem 3.1. Let u(x) be the solution of the problem (1) and v0(x) be the solution of
the reduced problem. Then

|u(x)− u0(x)| ≤ C
(
ε+ exp

(
−α(2− x)

ε

))
, x ∈ Ω.

Proof. For the proof, refer to [17]. �

4. Description of the method

Consider equation (2) on the interval [0,1],

− εu′′ + a(x)u′(x) + b(x)u(x) = F (x),

u(0) = φ(0), u(1) = γ,
(10)

where γ is evaluated from the reduced problem using Runge-Kutta method.
The solution of equation (10) is of the form [2]

u(x) = u0(x) +
a(1)

a(x)
(γ − u0(1))e

∫ 1
x (

−a(x)
ε
− b(x)
a(x)

)dx
+ o(ε), (11)

where u0(x) represents the solution of the reduced problem

a(x)u′(x) + b(x)u(x) = F (x).

Expanding a(x) and b(x) in (11) with the help of the Taylor’s series about the point x = 1
and restricting to their first terms, we obtain:
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u(x) = u0(x) + (γ − u0(1))e
∫ 1
x (

−a(1)
ε
− b(1)
a(1)

)dx
+ o(ε), (12)

Now we divide the interval [0, 1] in to N equal subintervals of mesh size h = 1/N so that
x = xi = ih, i = 0, 1, 2, ..., N. Then equation (12) gives

u(xi) = u0(xi) + (γ − u0(1))e
(
−a2(1)−εb(1)

εa(1)
)(1−xi) + o(ε), (13)

And taking the limit as h→ 0, we obtain

lim
h→0

u(ih) = u0(0) + (γ − u0(1))e
(
−a2(1)−εb(1)

a(1)
)( 1
ε
−iρ)

+ o(ε), (14)

where ρ = h/ε.
Rearranging equation(10) in the form

−εu′′ + (a(x)u(x))′ − a(x)′u(x) + b(x)u(x) = F (x). (15)

And using the usual rule of exact and trapezoidal rule of integration over
[xi−1, xi] for (i = 1, 2, ..., N − 1), then equation (15) becomes:

εu′i−1 − εu′i + a(xi)ui − a(xi−1)ui−1 +
h

2
[Riui +Ri−1ui−1] =

h

2
[Fi + Fi−1], (16)

where R(x) = b(x)− a′(x).
Next approximating the first order derivative u′i using central finite difference approxima-
tion

u′i =
ui+1 − ui−1

2h
+O(h2), (17)

and u′i−1 using non-symmetric finite difference approximation [19]

u′i−1 =
−3ui−1 + 4ui − ui+1

2h
+O(h2), (18)

with notation u(xi) = ui, R(xi) = Ri, a(xi) = ai, etc.
Substituting equation (17) and (18) in to equation (16), we obtain the difference scheme:

ε(
−3ui−1 + 4ui − ui+1

2h
)− ε(ui+1 − ui−1

2h
) + aiui − ai−1ui−1

+
h

2
[Riui +Ri−1ui−1] =

h

2
[Fi + Fi−1], for 1 ≤ i ≤ N − 1.

(19)

Introduce a fitting factor σ1(ρ) in the scheme (19), we get

− σ1(ρ)ε

(
ui−1 − 2ui + ui+1

h

)
+ aiui − ai−1ui−1 +

h

2
[Riui +Ri−1ui−1]

=
h

2
[Fi + Fi−1].

(20)

The fitting factor is to be determined in such a way that the solution of (20) converges
uniformly to the solution of (10). In the evaluation of the limit as h → 0 the equation
(20) becomes:

lim
h→0

[
− εσ1(ρ)

(
ui−1 − 2ui + ui+1

h

)
+ aiui − ai−1ui−1

]
= 0, (21)
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under the assumption that h
2 [Riui+Ri−1ui−1] and h

2 [Vi+Vi−1] are bounded. Substituting
equation (14) in equation (21) and simplifying, we get a constant fitting factor,

σ1(ρ) =
a(0)ρ

2

[
1− e

(
−a2(1)−εb(1)

a(1)

)
ρ

cosh
((−a2(1)−εb(1)

a(1)

)
ρ
)
− 1

]
. (22)

Applying the hyperbolic identity sinh2(x2 ) = coshx−1
2 , with ex/2e−x/2 = 1, ex = ex/2ex/2,

in to equation (22) we get

σ1(ρ) =
−a(0)ρ

2

[
e

(
−a2(1)−εb(1)

a(1)

)
ρ
2

sinh
((−a2(1)−εb(1)

a(1)

)ρ
2

)]. (23)

Remark 4.1. Implementing a similar procedure on the interval [1,2] we get,

σ2(ρ) =
−a(1)ρ

2

[
e

(
−a2(2)−εb(2)

a(2)

)
ρ
2

sinh
((−a2(2)−εb(2)

a(2)

)ρ
2

)]. (24)

Now Ω
2N

is discretized as follows

Ω
2N

= {x0 = 0 < x1 < x2, ..., xN = 1 < x2 < .. < x2N = 2},

and Ω
k

is the set of all mesh points from −1 to 0, with positive integer k where k = N ,

Ω
k

= {xk = −1 < x−k+1 <, ...x−1 < x0 = 0}.

Applying the fitting factors (23) and (24) on equation (20). Therefore, the required finite
difference scheme becomes

−σ(ρ)ε

(
ui−1 − 2ui + ui+1

h

)
+aiui−ai−1ui−1 +

h

2
[Riui+Ri−1ui−1] =

h

2
[Fi+Fi−1], (25)

where

Fi =

{
(fi − ciφ(xi−k)), for i = 1, 2, ..., N − 1,

(fi − ciui−k), for i = N + 1, N + 2, ..., 2N − 1,
(26)

and

σ(ρ) =

{
σ1(ρ), x ∈ Ω1,

σ2(ρ), x ∈ Ω2.

Therefore, the developed scheme in each domain is expressed in the following algorithm.

4.1. Numerical Algorithm. Step 1: We obtain the reduced problem by setting ε = 0
in equation (1).

Let u0 be the solution of the reduced problem of (1), i.e

a(x)u′0 + b(x)u0 + c(x)u0(x− 1) = f(x), x ∈ Ω1,

u0(x) = φ(x), x ∈ [−1, 0],
(27)

Approximate u0(1) using Runge-Kutta method and take uN = u0(1) = γ.
Step 2: To obtain the solution in the domain Ω1 = (0, 1), the numerical scheme in (25)
with (26) can be written in three term recurrence relations as follows

Eiui−1 +Diui +Giui+1 = Hi, for i = 1, 2, 3, ..., N − 1, (28)
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where 

Ei = −σ1ε
h − ai−1 + h

2Ri−1,

Di = 2σ1ε
h + ai + h

2Ri,

Gi = −σ1ε
h ,

Hi = h
2

{
fi + fi−1 −

(
ciφ(xi−N ) + ci−1φ(xi−1−N )

)}
,

for i = 1, 2, ..., N − 1.

Step 3: To obtain the solution in the domain Ω2 = (1, 2), the numerical scheme in (25)
with (26) can be written in three term recurrence relations as follows

Eiui−1 +Diui +Gi+1ui+1 = Hi, for i = N + 1, N + 2, ..., 2N − 1, (29)

where
Ei = −σ2ε

h − ai−1 + h
2Ri−1,

Di = 2σ2ε
h + ai + h

2Ri,

Gi = −σ2ε
h ,

Hi = h
2 [fi + fi−1 − (ciui−N + ciui−1−N )], for i = N + 1, N + 2, ..., 2N − 1.

Step 4: For i=2N (boundary condition), we apply composite simpson’s rule approximation
to the following integral∫ 2

0
g(x)u(x)dx ≈ h

3

(
g(0)u(0) + 2

k∑
i=1

g2iu2i + 4

k∑
i=1

g2i−1u2i−1 + g(2)u(2)

)
. (30)

Substituting equation (30) in to equation u(2)− ε
∫ 2

0 g(x)udx = l, we get

u(2)− εh
3

(
g(0)u(0) + 2

k∑
i=1

g2iu2i + 4
k∑
i=1

g2i−1u2i−1 + g(2)u(2)

)
≈ l,

after simplification, we obtain

u(2) ≈ l + ε
h

3

(
g(0)u(0) + 2

k∑
i=1

g2iu2i + 4
k∑
i=1

g2i−1u2i−1 + g(2)u(2)

)
. (31)

The resulting tri-diagonal systems (28) and (29) can be solved using Thomas algorithm.

5. Convergence analysis

The matrix-Vector form of the tridiagonal system (28) is

AU = B, (32)

where A = mi,j , 1 ≤ i, j ≤ N − 1 is a tri-diagonal matrix of order N-1, with

mi,i−1 = −σ1ε
h − ai−1 + h

2Ri−1,

mi,i = 2σ1ε
h + ai + h

2Ri,
mi,i+1 = −σ1ε

h ,

B = h
2{fi + fi−1 − (ciφ(xi−N ) + ci−1φ(xi−1−N ))},

with local truncation error

τi(h) = C(h2), (33)

we also have

AU − τ(h) = B, (34)
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where U = (U0, U1, U2, ..., UN )T denotes the approximate solution, and
τ(h) = (τ1(h), τ2(h), ..., τN (h))T is the local truncation error. From the equations (34) and
(32), we get A(U − U) = τ(h), . Thus, we obtain the error equation

AE = τ(h), (35)

where E = U − U = (e0, e1, e2, ..., eN )T .
Let Si be the sum of elements of the ith row of A. Then, we have

S1 =
N−1∑
j=1

m1,j =
σ1ε

h
+ a1 +

h

2
R1, for i = 1,

Si =
N−1∑
j=1

mi,j = ai − ai−1 +
h

2
[Ri +Ri−1], for i = 2(1)N − 2,

SN−1 =

N−1∑
j=1

mN−1,j =
σ1ε

h
+ aN−1 − aN−2 +

h

2
[RN−1 +RN−2], for i = N − 1.

Since 0 < ε << 1, for a given h, the matrix A is irreducible and monotone. Hence
A−1exists and it’s elements are non-negative [20]. From the error equation(35)

E = A−1τ(h), (36)

and
||E|| ≤ ||A−1|| ||τ(h)||. (37)

Let mk,i be the (k, i)th elements of A−1.Since mk,i ≥ 0, from the theory of matrices we
have

N−1∑
i=1

mk,iSi = 1, for k = 1, 2, ..., N − 1. (38)

Therefore, it follows that

N−1∑
i=1

mk,i ≤
1

minSi
1≤i≤N−1

=
1

Qj
≤ 1

|Qj |
, for some j between 1 and N − 1, (39)

where

Qj =



σ1ε

h
+ a1 +

h

2
R1, for i = 1,

ai − ai−1 +
h

2
[Ri +Ri−1], for i = 2(1)N − 2,

σ1ε

h
+ aN−1 − aN−2 +

h

2
[RN−1 +RN−2], for i = N − 1.

From matrix norm

||A−1|| = max
1≤k≤N−1

N−1∑
i=1

|mk,i| and ||T (h)|| = max
1≤i≤N−1

|Ti(h)|.

From equations(35), (36), (38) and (39), we get ej =
∑N−1

i=1 mk,iτi(h), j = 1(1)N − 1,
which implies

ej ≤
C(h2)

|Qj |
, j = 1(1)N − 1. (40)

Therefore, from Eq.(40) we have,

||E|| = O(h2). (41)
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This establishes that the developed scheme is second order accurate.

Remark 5.1. Similar analysis for convergence can be carried out for the scheme (29).

6. Numerical illustrations

The efficiency of the proposed method is tested by considering three different test prob-
lems. The maximum absolute errors (point-wise error) and numerical rate of convergence
are calculated and tabulated. The numerical results of the present method are compared
with the results of some numerical methods that are available in the literature. For those
problems where the exact solution is not known the maximum absolute error is calcu-
lated using the double mesh principle. The formula for maximum absolute error and its
associated rate of convergence are expressed, respectively.

ENε = max
0≤i≤N

∣∣∣∣UN (xi)− U2N (x2i)

∣∣∣∣, RNε = log2

(
ENε
E2N
ε

)
,

where UN (xi) denote the numerical solution. The ε−uniform error and rate of convergence
are computed by the formula

EN = max
ε
EN
ε

and RN = log2

(
EN

E2N

)
.

Example 6.1. Consider the following singularly perturbed delay differential equation with
integral boundary condition [17],

− εu′′(x) + (x+ 10)u′(x)− u(x− 1) = x2, x ∈ (0, 1) ∪ (1, 2),

u(x) = 1, for x ∈ [−1, 0],

u(2)− ε
∫ 2

0

x

3
u(x)dx = 2.

Table 1. Computed ENε , EN and (RN ) for Example 6.1 at 2N number
of mesh points

Method ε ↓ N →32 64 128 256 512
present 2−10 1.2442e-05 3.1636e-06 7.9754e-07 2.4655e-07 1.2325e-07

2−11 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 6.1585e-08
2−12 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 5.0158e-08
2−13 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 5.0158e-08
2−14 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 5.0158e-08
2−15 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 5.0158e-08
2−16 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 5.0158e-08
2−17 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 5.0158e-08
2−18 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 5.0158e-08
2−19 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 5.0158e-08
2−20 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 5.0158e-08
EN 1.2442e-05 3.1636e-06 7.9754e-07 2.0022e-07 5.0158e-08
RN 1.9756 1.9879 1.9940 1.9970

[17] EN 6.3216e-03 2.9562e-03 1.4271e-03 7.0074e-04 3.4709e-04
RN 1.0965 1.050 1.0262 1.0135
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(b) Point wise error

Figure 1. Numerical solution and Point wise error for Example 6.1 at
ε = 2−12.

Figure 2. Loglog plot for Example 6.1

Example 6.2. Consider the following singularly perturbed delay differential equation with
integral boundary condition [7, 18],

− εu′′(x) + 3u′(x) + u(x)− u(x− 1) = 1, x ∈ (0, 1) ∪ (1, 2),

u(x) = 1, x ∈ [−1, 0],

u(2)− ε
∫ 2

0

x

3
u(x)dx = 2.
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Table 2. Computed ENε , EN and (RN ) for Example 6.2 at 2N number
of mesh points.

Method ε ↓ N→32 64 128 256 512
present 10−4 1.5856e-06 4.0070e-07 1.0071e-07 2.5243e-08 1.0175e-08

1.9845 1.9924 1.9962 1.3109
10−8 1.5856e-06 4.0070e-07 1.0071e-07 2.5243e-08 6.3190e-09

1.9845 1.9924 1.9962 1.9981
10−12 1.5856e-06 4.0070e-07 1.0071e-07 2.5243e-08 6.3190e-09

1.9845 1.9924 1.9962 1.9981
10−16 1.5856e-06 4.0070e-07 1.0071e-07 2.5243e-08 6.3190e-09

1.9845 1.9924 1.9962 1.9981
10−20 1.5856e-06 4.0070e-07 1.0071e-07 2.5243e-08 6.3190e-09

1.9845 1.9924 1.9962 1.9981
EN 1.5856e-06 4.0070e-07 1.0071e-07 2.5243e-08 6.3190e-09
RN 1.9845 1.9924 1.9962 1.9981

[18] EN 6.8161e-06 1.7125e-07 4.2918e-07 1.0743e-07 2.6988e-08
RN 1.9928 1.9964 1.9982 1.9930
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(b) Point wise error

Figure 3. Numerical solution and Point wise error for Example 6.2 at
ε = 2−12.

Figure 4. Loglog plot for Example 6.2
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Example 6.3. Consider the following singularly perturbed delay differential equation with
integral boundary condition [18, 17],

− εu′′(x) + 5u′(x) + (x+ 1)u(x)− u(x− 1) = x2, x ∈ (0, 1) ∪ (1, 2),

u(x) = 1, x ∈ [−1, 0],

u(2)− ε
∫ 2

0

x

3
u(x)dx = 2.

Table 3. Computed ENε , EN and RN for Example 3 at 2N number of
mesh points

Method ε ↓ N→32 64 128 256 512
present 10−4 2.0275e-05 5.1138e-06 1.2840e-06 3.2167e-07 8.0501e-08

1.9872 1.9938 1.9970 1.9985
10−8 2.0275e-05 5.1138e-06 1.2840e-06 3.2167e-07 8.0501e-08

1.9872 1.9938 1.9970 1.9985
10−12 2.0275e-05 5.1138e-06 1.2840e-06 3.2167e-07 8.0501e-08

1.9872 1.9938 1.9970 1.9985
10−16 2.0275e-05 5.1138e-06 1.2840e-06 3.2167e-07 8.0501e-08

1.9872 1.9938 1.9970 1.9985
10−20 2.0275e-05 5.1138e-06 1.2840e-06 3.2167e-07 8.0501e-08

1.9872 1.9938 1.9970 1.9985
EN 2.0275e-05 5.1138e-06 1.2840e-06 3.2167e-07 8.0501e-08
RN 1.9872 1.9938 1.9970 1.9985

[18] EN 3.5556e-05 8.7577e-06 2.1733e-06 5.4134e-07 1.3509e-07
RN 2.0215 2.0107 2.0053 2.0026

7. Discussion and Conclusion

We proposed and demonstrated an exponentially fitted numerical technique for SPDDE
with an integral boundary condition. The error analysis of the scheme has been derived,
and it is found that the present method is second order convergent, independent of the
perturbation parameter. The numerical rate of convergence is also calculated. From the
results clearly we see that the presented scheme is capable of producing highly accurate
uniformly convergent solution for any fixed value of step size h ≥ ε when the perturbation
parameter tends to zero. Furthermore, numerical experiments are carried out to demon-
strate the performance of the proposed scheme. The numerical results clearly show the
high accuracy and order of convergence of the proposed scheme as compared to some of
the results available in the literature. The surface plot of Examples 6.1 and 6.2 in Figures
1a and 3a, respectively, clearly shows how the boundary layers behave as the perturbation
parameters approach zero. Even though the interior layer is not visible in the surface plot
of the numerical solution, it is possible to see this behavior in the point-wise error graphs
1b and 3b. In addition, Figures 2 and 4 show the log-log plot of the maximum point-
wise error for Examples 6.1 and 6.2, respectively. From these, it is clear to see that the
maximum absolute error decreases as the number of mesh points increases, demonstrating
that the convergence is parameter-uniform. Lastly, the main feature of the proposed fitted
scheme is that it does not depend on the very fine mesh size.
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