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AN SADR EPIDEMIC MODEL WITH A TRANSPORT-RELATED

INFECTION BETWEEN TWO REGIONS

R. MEMARBASHI1∗, S. SAEEDI1, §

Abstract. If an infectious disease is eradicated in an area, the travelling of infected
people can cause a re-epidemic of the disease in such area. Travelling is one of the
influential factors in the spread of an infectious diseases. In this paper, we present an
epidemic model to investigate the effect of travelling between two regions. We compute
the basic reproduction number of the model and study the local and global stability of
the equilibrium points. In addition, we perform numerical simulations to illustrate the
impact of increasing travel parameters on disease dynamics. The results show that travel
between areas will change the dynamics of the disease and spread the infection.
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1. Introduction

Population dispersion is one of the factors that causes the transmission of many diseases
such as influenza, SARS, and COVID-19 from one region to another region. In addition,
other factors such as lifestyle, sexual behaviors, and increased international travel lead
to outbreaks of infectious diseases in humans. The question is: what effect does travel
between different regions have on the dynamics of the disease in each of the regions?
Until the work of Cui et. al. [4], most studies have not examined transport contamination
in infectious disease dynamics. For example, Rvanchev and Longini (1985) examined the
global spread of influenza in air networks, and Ful Ford (2002) formulated a metapopu-
lation model with age-structured, or Arino and Vanden (2003) studied a specific disease
in humans that spread through person-to-person contact within a city or country, then
moved from one city to another city. All these investigations ignore the possibility of indi-
viduals becoming infected during travel. However, in some regions, like some developing
countries, the situation is different. Some developing countries have large populations on
trains and public transport. Poor hygiene in vehicles and places of transport is an element
in the transmission and spread of infectious diseases in these countries. Cui et. al., [4]
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Table 1. Description of Notations

Notation Description of Notation

Si, i = 1, 2 Susceptible individuals in region i

Ai, i = 1, 2 Asymptomatic infectious individuals and infectious individuals not detected

by healthcare system in region i
Di, i = 1, 2 Infectious individuals detected by the healthcare system, i.e., confirmed cases

in region i

Ri, i = 1, 2 Recovered individuals in region i
β Infection rate

α The rate at which susceptible individuals of region j leave for region i, i, j = 1, 2, i 6= j

γ Infection rate of the travelling individuals
µ Natural death rate

ν Identification rate of infectious individuals

η Rate of loss of immunity among recovered individuals
η1 Rate of recovery of confirmed cases

δ1 Rate of exacerbation of symptoms of the disease
ξ Rate of recovery of asymptomatic infectious individuals

m Disease-induced mortality rate

Λ Recruitment rate

proposed a SIS epidemic model to understand the effect of transport-related infection on
disease spread. After that, many studies were done in this field. Liu and Takeuchi (2006)
[14] studied the spread of the disease due to transport contamination by input tests on
the SIQS model. Wan and Cui (2007) [30] studied transport-induced contamination in the
SEIS model, Liu and Zhou (2009) [16] examined the transport-induced contamination in
the SIRS model and Chen et. al., [3] studied the SIR model. It is reasonable to study the
effect of transport-related infection in environments in which there is a relatively large dis-
placement between two or more regions in such environment. In some multi-group models,
the effect of displacement on the infection rate may be negligible and can be ignored due to
the small amount of migration between different parts of the region. Detailed studies have
been done on multi-group models without migration. See, for example, Li [10], Ottaviano
et. al., [22, 23], Sottile et. al., [25] and Muroya et. al., [19].
An important feature of some infectious diseases, such as the Covid-19 pandemic, is the
presence of asymptomatic individuals, which are people who can transmit the infection
despite not showing symptoms. Asymptomatic carriers are usually detected late, which
makes them easily transmit the disease to other people. As an example, in references
[8, 18, 22, 23, 26], compartments for asymptomatic carriers are considered in their mod-
els. In this work, we consider a two-region SADR(Susceptible-Asymptomatic infectious-
Detected infectious-Recovered-Susceptible) model based on the model presented in [18]
where the authors considered direct and indirect transmission of COVID-19. Clearly, we
only consider direct transmission and also the environment with two areas between which
significant travel is done. We aim to study the impact of transport-related contamination
on disease dynamics in this model. Two cases are considered in the model. First, we
study the case where no travel is done between two regions, and then the situation in
which people in all classes except the identified infected people can travel. We compute
the basic reproduction number of the model and study the local and global stability of the
equilibria. In addition, we perform numerical simulations to investigate better the impact
of increasing travel parameters on disease dynamics.

2. Model formulation
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Figure 1. The flowchart of the model

We consider two areas with a large population and a significant number of trips between
them. As an example, in Iran, we can consider the city of Tehran and the northern
provinces, both of which have a large population and also a lot of travel between them.
In epidemic models, the population is divided into different classes and how the population
moves between these classes forms the dynamics of the system.

We use the model introduced in [18] by the author and its compartments, the class Si
for susceptible individuals; the class Ai that consists of two groups of individuals in the
community, asymptomatic infectious individuals, i.e., infected individuals who have no
symptoms of the disease and individuals with symptoms of the disease that are not de-
tected by the healthcare system; the class Di for infectious individuals who are detected
by the healthcare system, i.e., confirmed cases; and the class of recovered individuals Ri.
The total population in the regions is:

Ni(t) = Si(t) +Ai(t) +Di(t) +Ri(t), i = 1, 2. (1)

We assume that the related parameters, which assume non-negative values, are the
same for both cities. The population of susceptible individuals in city i increases with the
arrival of new people at the recruitment rate Λ, the loss of immunity among recovered
individuals at the rate η, and the susceptible individuals of the city j leave for city i
at the rate α. It is decreased when the susceptible individuals are infected via effective
contact with infectious individuals at rate βSiAi, by natural death at the rate µ, and by
susceptible individuals in city i leaving city j at the rate α. In addition, it is decreased,
when the fractions αSj and αAj of the people who are traveling from region j to i, will
be infected with the disease, at infection rate γ, during the trip. This generates a flow of
the form γ(αSj)(αAj) = γα2SjAj .
As it is mentioned in [14] from the biological point of view, the number of susceptible
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during travel should be nonnegative, that is, αSj − γα2SjAj ≥ 0. The population of
asymptomatic infected individuals in the city i is increased by infection of susceptible
individuals at the rate βSiAi and infection of traveling individuals in the city j to the
city i at the rate γα2SjAj . It is reduced by travel to the city j at the rate α, natural
death at the rate µ, and disease-induced mortality at the rate m. Also, it is reduced
when asymptomatic infected individuals are identified in two ways, testing and the onset
of symptoms at rates ν, δ1.
The population of detected infectious individuals is increased by identifying infected indi-
viduals in two ways, testing and the onset of symptoms, at rates δ1, ν respectively. It is
decreased by natural death and death due to disease and identified individuals recovered
at the rate η1. In this model, it is assumed that the identified infected individuals are not
allowed to travel, and as in [18], we assumed that the detected patients are either being
treated in medical centers or are being treated and quarantined at home. Therefore, we
have ignored the very small number of people who may be infected by contact with such
patients.
The population of recovered individuals is increased when identified individuals recover
and move to the recovered class, at the rate η1, and when recovered individuals of city j
leave for city i. Also, asymptomatic individuals recovered at the rate ξ. It is decreased by
the loss of immunity at the rate η, by the natural death at the rate µ, and when recovered
individuals of the city i move to the city j at the rate α.
Based on the flow diagram of the model depicted in Figure 1 and the explanation given
above, the dynamic of the system is governed by the following equations:

dS1

dt
= Λ− βS1A1 − αS1 + αS2 + ηR1 − µS1 − γα2S2A2,

dS2

dt
= Λ− βS2A2 − αS2 + αS1 + ηR2 − µS2 − γα2S1A1,

dA1

dt
= βS1A1 − (µ+m)A1 + αA2 − αA1 − (δ1 + ν)A1 + γα2S2A2,

dA2

dt
= βS2A2 − (µ+m)A2 + αA1 − αA2 − (δ1 + ν)A2 + γα2S1A1,

dD1

dt
= (δ1 + ν)A1 − (µ+m+ η1)D1,

dD2

dt
= (δ1 + ν)A2 − (µ+m+ η1)D2,

dR1

dt
= η1D1 − (µ+ η + α)R1 + αR2 + ξA1,

dR2

dt
= η1D2 − (µ+ η + α)R2 + αR1 + ξA2.

(2)

In this model, infection is transmitted with the incidence rate βSiAi, i = 1, 2, and when
the individuals in the city i travel to the city j, infection is transmitted with the rate
γα2SiAi, i = 1, 2. Assuming that the travel time between two regions is short, we ignore
birth, death, and recovery during the travel time.
In this article, we have considered two areas for travel. This model can be generalized by
considering N regions. The analysis of N-region model is an open research problem.
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3. Model Analysis

We study the dynamics of this model in two cases. At first, we suppose no one is
allowed to travel and then we suppose all people except the identified infected individuals
are allowed to travel between regions.

3.1. No travelling allowed. At first, we assume that no travel takes place between two
regions, i.e., α = 0. In this case, changes occur independently, and we have a system with
the following form in each region,



dS

dt
= Λ− βSA− µS + ηR,

dA

dt
= βSA− (µ+m)A− (δ1 + ν + ξ)A,

dD

dt
= (δ1 + ν)A− (µ+m+ η1)D,

dR

dt
= η1D + ξA− (µ+ η)R.

(3)

We compute the equilibrium points and basic reproduction number of the system. The

system (3) has a disease-free equilibrium point (DFE), E0 =

(
Λ

µ
, 0, 0, 0

)
. A classical

way to compute the basic reproduction number R0 of a model, which is a key quantity in
mathematical epidemiology, is the linearization theorem which uses the Jacobian matrix
of the system in disease-free equilibrium point, see [Ch.5, 17].

Lemma 3.1. In the system (3), with R0 =
βΛ

µ(µ+m+ δ1 + ν + ξ)
. We have:

1. If R0 < 1, then the DFE point is locally asymptotically stable.
2. If R0 > 1, then the DFE point is unstable.

Proof. The Jacobian matrix for (3) is given by,

J(E0) =



−µ −βΛ

µ
0 η

0 β
Λ

µ
− Z 0 0

0 (δ1 + ν) −(µ+m+ η1) 0
0 ξ η1 −(µ+ η)


where, Z = (µ + m + δ1 + ν + ξ). This matrix has eigenvalues λ1 = −µ, λ2 = −(µ +

η), λ3 = −(µ + m + η1) and λ4 = β
Λ

µ
− Z. Now λ4 < 0 is equivalent to R0 =

βΛ

µ(µ+m+ δ1 + ν + ξ)
< 1, and we obtain the claimed result.

Furtheremore, whenR0 > 1, (3) has the unique endemic equilibrium point E(S∗, A∗, D∗, R∗)
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where, 

D∗ =
(δ1 + ν)

(µ+m+ η1)
A∗ = p1A

∗,

R∗ =
η1p1A

∗ + ξA∗

(µ+ η)
=

(η1p1 + ξ)A∗

(µ+ η)
= q1A

∗,

S∗ =
(µ+m+ δ1 + ν + ξ)

β
=

Λ

µR0
,

A∗ =
Λ(1− 1

R0
)

µ+m+ δ1 + ν + ξ − ηq1
,

(4)

with µ+m+ δ1 + ν + ξ − ηq1 > 0.

3.2. All individuals except detected infectious ones can travel. Now we suppose
all people except the detected infectious individuals are allowed to travel. Considering the
positive invariance that we discuss in the following lemma, we can limit our study to this
set.

Lemma 3.2. The set

Ω = {(S1, A1, D1, R1, S2, A2, D2, R2) : Si ≥ 0, Ai ≥ 0, Di ≥ 0, Ri ≥ 0,
2∑
i=1

(Si +Ai +Di +Ri) ≤
2Λ

µ

}
is a positively invariant set for the system (2).

Proof. The total population N(t) =
∑2

i=1(Si(t) + Ai(t) + Di(t) + Ri(t)), satisfies the
relation,

dN

dt
= 2Λ− µN −

2∑
i=1

m(Ai +Di) ≤ 2Λ− µN.

Now by using comparison lemma, we have,

N(t) ≤ N(0)e−µt +
2Λ

µ
(1− e−µt) ≤ max

(
N(0),

2Λ

µ

)
. (5)

All components of the solution of the system are continuously differentiable. Furthermore,
if all compartments have nonnegative initial conditions and if any of the compartments are
zero at time t = ti ≥ 0, then the derivatives are nonnegative. For example if A1(t1) = 0,
A2(t1) ≥ 0, Si(t1) ≥ 0, Di(t1) ≥ 0 and Ri(t1) ≥ 0 for i = 1, 2, we get,

dA1(t1)

dt
≥ 0

that implies A1(t+1 ) ≥ 0, and hence, A1(t) is nonnegative for all time t ≥ 0. The same
reason is true for other variables, and as mentioned in [21] it can be concluded that all
compartments are nonnegative at all times t ≥ 0. Now this result with the relation (5)
show the positive invariance of Ω.
We study various properties of this system. At first, we compute the equilibrium points
and basic reproduction number of the system. This system has a disease-free equilibrium

point (DFE), E0 =

(
Λ

µ
, 0, 0, 0,

Λ

µ
, 0, 0, 0

)
. To derive the basic reproduction number R0γ ,

we use the next generation matrix approach, see [28].
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Lemma 3.3. The basic reproduction number of (2) is as follows:

R0γ =

(β + γα2)
Λ

µ

µ+m+ δ1 + ν + ξ
.

Proof. The corresponding matrices F and V in the next generation matrix method
have the following forms,

F =


βS1A1 + γα2S2A2

0
βS2A2 + γα2S1A1

0

, F =


β

Λ

µ
0 γα2 Λ

µ
0

0 0 0 0

γα2 Λ

µ
0 β

Λ

µ
0

0 0 0 0

,

and

V =


(µ+m+ δ1 + ν + ξ)A1 + αA1 − αA2

−(δ1 + ν)A1 + (µ+m+ η1)D1

(µ+m+ δ1 + ν + ξ)A2 + αA2 − αA1

−(δ1 + ν)A2 + (µ+m+ η1)D2

 ,

V =


X 0 −α 0

−(δ1 + ν) (µ+m+ η1) 0 0
−α 0 X 0
0 0 −(δ1 + ν) (µ+m+ η1)

 ,
in which X = (µ+m+ δ1 + ν + ξ + α). Hence

FV −1 =



M 0 N 0

0 0 0 0

N 0 M 0

0 0 0 0


, where M =

(βX + γα3)
Λ

µ

X2 − α2
, N =

(βα+ γα2X)
Λ

µ

X2 − α2
.

For computation of the spectral radius of FV −1, we compute its characteristic polynomial,

det(FV −1 − λI) = λ2((M − λ)2 −N2) = 0,

which has the following roots, λ1 = M −N and λ2 = M +N. Hence,

R0γ = ρ(FV −1) = M +N =

(βX + γα3)
Λ

µ

X2 − α2
+

(γα2X + βα)
Λ

µ

X2 − α2
=

(β + γα2)
Λ

µ

µ+m+ δ1 + ν + ξ
.

The following result illustrates the threshold property of R0γ .
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Theorem 3.1. In system (2), we have:
1. If R0γ < 1, then the DFE point is locally asymptotically stable.
2. If R0γ > 1, then the DFE point is unstable.

Proof. The Jacobian matrix of the system at E0 has the following form:

J(E0) =

[
A B
B A

]
,

where

A =



−µ− α −βΛ

µ
0 η

0 β
Λ

µ
−X 0 0

0 (δ1 + ν) −(µ+m+ η1) 0

0 ξ η1 −(µ+ η + α)


,

B =



α −γα2 Λ

µ
0 0

0 γα2 Λ

µ
+ α 0 0

0 0 0 0

0 0 0 α


.

Now by [4], the eigenvalues of J(E0) are identical to those of (A+B) and (A−B). And
we have,

A+B =



−µ −(β + γα2)
Λ

µ
0 η

0 β
Λ

µ
−X + γα2 Λ

µ
+ α 0 0

0 (δ1 + ν) −(µ+m+ η1) 0

0 ξ η1 −(µ+ η)


,

and

A−B =



−µ− 2α −(β − γα2)
Λ

µ
0 η

0 β
Λ

µ
−X − γα2 Λ

µ
− α 0 0

0 (δ1 + ν) −(µ+m+ η1) 0

0 ξ η1 −(µ+ η + 2α)


.
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Now λ1 = −µ, λ2 = −(µ+ η), λ3 = −(µ+m+ η1) and λ4 = β
Λ

µ
−X + γα2 Λ

µ
+ α are

eigenvalues of A + B. And λ
′
1 = −(µ + 2α), λ

′
2 = −(µ + m + η1), λ

′
3 = −(µ + η + 2α)

and λ
′
4 = β

Λ

µ
− X − γα2 Λ

µ
− α are eigenvalues of A − B. Since R0γ < 1 implies,

λ4 = β
Λ

µ
− X + α + γα2 Λ

µ
< 0 and λ

′
4 = β

Λ

µ
− X − γα2 Λ

µ
− α < 0, hence E0 is lo-

cally asymptotically stable, and the proof is complete.

To determine whether the disease can invade the population, we study the global sta-
bility of the DFE equilibrium point.

Theorem 3.2. If R0γ < 1, then the DFE point of (2) is globally asymptotically stable.

Proof. We use the function, V (t) = A1 + A2 as a Lyapunov function. Its derivative
along the solutions of the system is,

V̇ (t) = dV (X(t))
dt = A

′
1 + A

′
2 = βS1A1 − (µ + m + δ1 + ν + ξ + α)A1 + αA2 + γα2S2A2 +

βS2A2 − (µ+m+ δ1 + ν + ξ + α)A2 + αA1 + γα2S1A1 = (β + γα2)(S1A1 + S2A2)− (µ+
m+ δ1 + ν + ξ)(A1 +A2).

This relation shows that, if A1 = A2 = 0 then V̇ (t) = 0. Furthermore, since R0γ < 1,

V̇ (t) ≤ [(β + γα2)
Λ

µ
− (µ+m+ δ1 + ν + ξ)](A1 +A2) ≤ 0,

which implies,

L = {(S1, A1, D1, R1, S2, A2, D2, R2)/V̇ (t) = 0}
= {(S1, A1, D1, R1, S2, A2, D2, R2)/A1 = 0, A2 = 0}.

Now by restricting the system on the set L, we have,
d(D1 +D2)

dt
= −(µ+m+ η1)(D1 +D2)

which implies limt→∞D1(t) = limt→∞D2(t) = 0, and,

M ⊂ L1 = {(S1, A1, D1, R1, S2, A2, D2, R2)/A1 = A2 = 0, D1 = D2 = 0},

in which M is the largest positively invariant subset of L. Restricting the system to

the set L1 results in,
d(R1 +R2)

dt
= −(µ + η)(R1 + R2), which implies, limt→∞R1(t) =

limt→∞R2(t) = 0 and,

M ⊂ L2 = {(S1, A1, D1, R1, S2, A2, D2, R2)/A1 = A2 = 0, D1 = D2 = 0, R1 = R2 = 0}.

Finally, by restricting the system to the set L2, the result is,

d(S1 + S2)

dt
= 2Λ− µ(S1 + S2),

d(S1 − S2)

dt
= (−2α− µ)(S1 − S2).

Which shows,

lim
t→+∞

(S1(t) + S2(t)) =
2Λ

µ
, lim
t→+∞

(S1(t)− S2(t)) = 0,

hence,

lim
t→+∞

Si(t) =
Λ

µ
, (i = 1, 2).
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Therefore, M = {E0} and by the LaSalle theorem, E0 is globally asymptotically stable
provided R0γ < 1. This completes the proof.

Now we study the endemic equilibrium point of the model and analyze its global sta-
bility.
WhenR0γ > 1, our system has the unique positive equilibrium E∗(S∗, A∗, D∗, R∗, S∗, A∗, D∗, R∗),
where 

D∗ =
(δ1 + ν)

(µ+m+ η1)
A∗ = p1A

∗,

R∗ =
η1p1A

∗ + ξA∗

(µ+ η)
=

(η1p1 + ξ)A∗

(µ+ η)
= q1A

∗,

S∗ =
(µ+m+ δ1 + ν + ξ)

β + γα2
=

Λ

µR0γ
,

A∗ =
Λ(1− 1

R0γ
)

µ+m+ δ1 + ν + ξ − ηq1
.

(6)

Now we extract sufficient conditions for the global stability of the endemic equilibrium
point.

Theorem 3.3. Suppose µ+2α > max

{
η

2
+

2(β − γα2)Λ

µ
,
η1 + ξ − η

2

}
and µ+m+

η1

2
>

δ1 + ν

2
, then the endemic equilibrium point of (2) is globally asymptotically stable when

R0γ > 1.

Proof. We consider the function,

V (X) =V (S1, A1, D1, R1, S2, A2, D2, R2) =

=
(S1 − S2)2 + (A1 −A2)2 + (D1 −D2)2 + (R1 −R2)2

2
.

The time derivative of V along the solutions of the system, V̇ (t) = dV (X(t))
dt , have the

following form,
V̇ (t) = (S1−S2)[β(S2A2−S1A1) + η(R1−R2)− µ(S1−S2)− 2α(S1−S2)− γα2(S2A2−
S1A1)] + (A1 − A2)[β(S1A1 − S2A2) − (µ + m + δ1 + ν + ξ)(A1 − A2) − 2α(A1 − A2) −
γα2(S1A1 − S2A2)] + (D1 − D2)[(δ1 + ν)(A1 − A2) − (µ + m + η1)(D1 − D2)] + (R1 −
R2)[η1(D1 −D2) + ξ(A1 −A2)− (µ+ η + α)(R1 −R2)− α(R1 −R2)].

Hence,

V̇ (t) = ((β−γα2)(S2A2−S1A1))(S1−S2)+η(R1−R2)(S1−S2)−(µ+2α)(S1−S2)2 +(β−
γα2)(S1A1−S2A2)(A1−A2)−(µ+m+δ1+ν+ξ+2α)(A1−A2)2+(δ1+ν)(A1−A2)(D1−D2)−
(µ+m+η1)(D1−D2)2+η1(D1−D2)(R1−R2)+ξ(A1−A2)(R1−R2)−(µ+η+2α)(R1−R2)2.

Now by using the inequalities, AB ≤ 1
2(A2 +B2) and

S2A2 − S1A1 = S2(A2 −A1) +A1(S2 − S1) ≤ Λ

µ
(|A1 −A2|+ |S1 − S2|),

we have
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V̇ (t) ≤ [η2 + 2(β−γα2)Λ
µ − (µ + 2α)](S1 − S2)2 + [2(β−γα2)Λ

µ − (µ + m + 1
2δ1 + 1

2ν + 1
2ξ +

2α)](A1 −A2)2 + [ δ1+ν
2 − (µ+m+ 1

2η1)](D1 −D2)2 + [η1+ξ
2 − (µ+ 1

2η + 2α)](R1 −R2)2.

Therefore this relation in conjunction with the supposed inequalities implies that we
can choose λ < 0 such that V̇ (t) ≤ λV (t). And thus by Gronwall Lemma, V (X(t)) ≤
V (X(0))eλt for t > 0, which shows that for any solutionX(t) = (S1, A1, D1, R1, S2, A2, D2, R2)
of the system, we have

lim
t→∞

V (X(t)) = 0. (7)

Now let p ∈ R8
≥0 and q ∈ ω(p), in which ω(p) is the ω-limit set of the solution of the

system which initiate at p, i.e., X(t, p). There exists {tm}∞1 , with limm→∞ tm = ∞ and
limm→∞X(tm, p) = q. Continuity of V implies, limm→∞ V (X(tm, p)) = V (q), this relation
with (7) implies V (q) = 0. Hence,

ω(p) ⊂M = {q : V (q) = 0}

and

{q : V (q) = 0} = {(S1, A1, D1, R1, S2, A2, D2, R2) ∈ R8
≥0|S1 = S2, A1 = A2, D1 = D2, R1 = R2}.

On the set M the relations S = S1 = S2, A = A1 = A2, D = D1 = D2, R = R1 = R2,
leads to the following system,



dS

dt
= Λ− (β + γα2)SA− µS + ηR,

dA

dt
= (β + γα2)SA− (µ+m)A− (δ1 + ν + ξ)A,

dD

dt
= (δ1 + ν)A− (µ+m+ η1)D,

dR

dt
= η1D + ξA− (µ+ η)R.

(8)

This system is a special case of the SAIRS system introduced and analyzed in [22]. Hence
the equilibrium point (S∗, A∗, D∗, R∗) of the above system is globally asymptotically stable
when R0γ > 1 as it is proved in [22]. This shows that the endemic equilibrium is globally
asymptotically stable.

4. Numerical Simulations

In this section we simulate the system using MATLAB, so that the solutions of the
system and sensitivity of the solutions to traveling parameters can be seen numerically.
We present two examples.
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Table 2. Parameters and initial values

Parameter Example 1 Example 2 Variable Example1 Example2

β 5× 10−6 10−6 S1(0) 49000 50000

α 10−2 10−1 A1(0) 10 100

γ 3× 10−4 10−3 D1(0) 10 10
µ 6× 10−3 6× 10−2 R1(0) 0 0

ν 3× 10−1 2× 10−1 S2(0) 49000 50000

η 3× 10−1 5× 10−1 A2(0) 150 0
η1 2× 10−1 2× 10−1 D2(0) 15 0

η2 3× 10−1 3× 10−1 R2(0) 0 0

δ1 23× 10−2 3× 10−1

ξ 4× 10−1 2× 10−1

m 2× 10−4 10−4

Λ 650 6510
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Example 1.
We use the parameters and initial values mentioned in Table 2. In this case, R0γ < 1. In
Figure 2, the plots A-D, show the sensitivity of Ai(t) with respect to α, γ, and E,F show
the trajectories.
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Example 2.
In this example, we use the set of parameters and initial values mentioned in Table 2, in
which R0γ > 1. The plots A-D, in Figure 3, show the sensitivity of Ai(t) with respect
to α, γ, and E,F show the trajectories. The initial values show that there is no infectious
individual in region 2 at t = 0. But the graph related to A2(t) shows that the disease has
spread and become endemic in region 2, and this is due to people traveling between the
two regions.
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Figure 3

Conclusion

In this paper a new deterministic model on the effect of travel on the dynamic of
infectious disease is proposed. Properties of the model equations such as feasible region,
basic reproduction number of the model, equilibrium points and their local and global
stability have been studied. We analized the case of 2 regions. The general case can
have N regions, which we leave as an open problem. Sufficient conditions for the global
stability of endemic equilibrium point derived in Th.3.4 shows that increasing the traveling
parameters, i.e., α, γ, makes these conditions easy to satisfy. Also, the increasing of α, γ
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causes the increase of R0γ . Increasing R0γ to values greater than 1 and establishing those
sufficient conditions causes the global stability of the endemic point, and this is also a sign
of the persistence of the disease.
This problem can also be seen in the numerical simulations. Figure 3(c-j), show the effect
of the increase in α, γ on the increase in peak height of asymptomatic patients Ai and
confirmed cases Di, as well as on the final value of these variables in both areas.
Figure 3(b) shows that, although there is no diseased person in area 2 at time 0, i.e.
A2(0) = D2(0) = R2(0) = 0, the disease spreads and becomes endemic in this area. And
this shows the impact of travel between regions on the spread of the disease.
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