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ON EMBEDDING FAMILY OF NUMERICAL SCHEME FOR SOLVING

NON-LINEAR EQUATIONS WITH ENGINEERING APPLICATIONS

M. SHAMS1, N. KAUSAR2, E. OZBILGE3,∗, E. ÖZBİLGE4, §

Abstract. The solution of non-linear equations is one of the most important and fre-
quent problems in numerous engineering and scientific disciplines. Numerous real-world
issues can be described using non-linear equations in a variety of scientific fields, in-
cluding natural science, social science, electrical, chemical, and mechanical engineering,
economics, statistics, weather forecasting, and particularly biomedical engineering. Iter-
ative techniques must be used in order to solve such nonlinear problems. The majority
of numerical methods required the first or higher derivative of the functions, whose com-
putational cost is large and diverges if the slope of the functions at the beginning or
some intermediate points approaches zero. To prevent this, we develop numerical meth-
ods that utilize the parameter embedding, also known as Homotopy methods, to find
the root of nonlinear equations. Convergence analysis shows that the proposed family
of methods’ order of convergence is two. To determine the error equation of the pro-
posed technique, the computer algebra system CAS-Maple is employed. To illustrate
the accuracy, validity, and usefulness of the proposed technique, we consider a few real-
world applications from the fields of civil and chemical engineering. In terms of residual
error, computational time, computational order of convergence, efficiency, and absolute
error, the test examples’ acquired numerical results demonstrate that the newly proposed
algorithm performs better than the other classical methods already existing in literature.
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1. Introduction

Numerical iterative algorithms for computing approximate roots of nonlinear scalar
equations are of significant importance in computational and applied mathematics due
to their widespread applications in many fields of modern science, including engineering,
mathematical chemistry, bio-mathematics, biomedical engineering, economics, linear pro-
gramming, physics, and statistics. Most of the engineering problems turns out to solve
nonlinear equations. We required an iterative algorithm to solve these types of technical
and scientific problems because, in most situations, analytical techniques are ineffective.
The Newton’s method, a well-known and classical iterative algorithm, was presented by
Newton [1] in the last decades of the fifteenth century and has been widely utilized for
many years to solve non-linear equations. Recently, by utilizing a variety of mathematical
procedures, researchers have presented a new variety of single-step and multi-step iterative
methods and modified the Newton’s iteration schemes. In 2007, Noor et al. [2] developed
second derivative-free algorithm by modifying generalized one parameter Halley method.
Iterative techniques requiring the higher derivative of the functions were developed by
Gutierrez et al. [3] in 1997, Hernández et al. [4] in 2001, Kang et al. [5] in 2013, and
many others.

These iterative numerical algorithms have the drawback of increasing computational
costs, since higher-order derivatives are utilized. It is quite challenging to maintain a
balance between computation cost and convergence rate because doing so would definitely
cause the other to decrease. Second, the numerical technique diverges if the slope of the
function at the starting or intermediate points approaches zero. Due to these restrictions,
we seek for numerical techniques that consistently converge on the starting values while
other methods fail. The main goal of this study is to develop a reliable numerical method
that converges as the function or its derivative gets closer to zero at the initial values or
some other intermediate values.

The main contributions of this research works are

• Construction of family of numerical scheme for finding roots of scalar nonlinear
equations.
• Using CAS-Maple to verify the convergence order of the proposed method.
• Construction of numerical iterative scheme using embedding parameter method.
• Utilizing basins of attraction, perform a dynamic study of the proposed embedding

approach.
• Computational tools are used to analyze the convergence rate, efficiency, stability,

and applicability of the proposed technique.
• Analyzing how the suggested technique is applied in various research disciplines.

In 2007, Wu et al.[6] consider secant homotopy continuation method and in 2008 Wu
[7] modified ancient Chinese algorithm into Homotopy continuation method. Among such
methods, the most famous is classical Newton’s method [8] has a local quadratic conver-
gence for finding roots of

f(x) = 0, (1)

given as:

y(u) = x(u) − f(x(u))

f ′(x(u))
. (2)

Method (2) faces some difficulty when the first derivative f ′(x) is zero or near zero
which rises a divergent iterative sequence. To overcome this problem we look towards
homotopy continuation methods (HCM). Homotopy continuation method is very effective
and a powerful tool to approximate the root of (1).
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In 2005, Wu et al.[9] modify method (2) into homotopy method (abbreviated as NHCM)
given as:

y(u) = x(u) − H(x(u), t)

H′(x(u), t)
, (3)

where H(x(u), t) is known as homotopy function and continuous refer to an embedded f(p)
with auxilary homotopy function g(p) in a single parameter family, say t, over the interval
t ∈ [0, 1] such that

H(x(u), t) = tf(x(u)) + (1− t)g(x(u)), (4)

satisfying the following conditions

(i) H(x(u), 0) = g(x(u)), (5)

(ii) H(x(u), 1) = f(x(u)), (6)

where divergence of (3) occurs if

H′(x(u), t) = 0 or H′(x(u), t)→ 0. (7)

To avoid this, we have to assume that H′(x(u), t) 6= 0 or H′(x(u), t) 9 0. Thus, we guaran-
teed that

tf ′(x(u)) + (1− t)g′(x(u)) 6= 0 or 9 0. (8)

Therefore, we assume that

tf ′(x(u)) + (1− t)g′(x(u)) = C (9)

or Cex
(u)

or C sin(x(u))+D, ..., where C,D, ..., are constant and C = D, ..., 6= 0. Integrating

tf ′(x(u)) + (1− t)g′(x(u)), we have

tf(x(u)) + (1− t)g(x(u)) = Cx(u) + k, (10)

or Ce(u)+k, ..., where k is a parameter and may be zero. For the removal of the divergence
we have the choice to choose auxiliary function g(x) such that g(x) satisfies the following
rules i.e.,

(i)For t = 0 =⇒ g(x) = Cx+ k or Cex + k (11)

(ii)For t = 1 =⇒ f(x) = Cx+ k or Cex + k (12)

(iii)For t ∈ (0, 1) =⇒ g(x) = C1f(x) + C2x+ k (13)

or C1f(x) + C2e
x + k, . . . (14)

where C1, C2, . . . are constants and not equal to zero.
The main aim of this article to construct two parameter family of iterative method

which is more efficient as compared to classical methods. Dynamical planes provide bet-
ter convergence region as compared to classical methods which contains derivatives and
HCM methods. Using the computer program Maple 18.0, we compare the draw basins
of attraction of the suggested embedded Homotopy numerical algorithm to those of the
currently used methods for the graphical analysis. The graphical results show how quickly
the created method converges, confirming its supremacy to other techniques.
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2. Construction of HCM

In this section, first we proposed the following Newton type single root finding method:

y(u) = x(u) − f(x(u))

f ′(x(u))

 1

1− α
(

f(x(u))

β−(f(x(u))
2

)
 , (15)

where α, β are real parameters.
Convergence Analysis
Here, we prove the following theorem for iterative schemes (15).

Theorem 2.1. Let ζ ∈ I be a simple root of a sufficiently differential functionf : I ⊆
< −→ < is an open interval I. If x0 is sufficiently close to ζ then the convergence order
of the family of (15) is 2 and satisfying the error equation

ei+1 =

(
c2 −

α

β

)
e2i +O(e3i ), (16)

where cm = fm(ζ)
m!f ′(ζ) ;m ≥ 2.

Proof. Let ζ be a simple root of f and x(u) = ζ + ei. By Taylor’s series expansion of
f(x(u)) around x = ζ, taking f(ζ) = 0, we get:

f(x(u)) = f
′
(ζ)(ei + c2e

2
i + c3e

3
i +O(e4i ), (17)

and

f ′(x(u)) = f
′
(ζ)(1 + 2c2ei + 3c3e

2
i + ...). (18)

Dividing (17) by (18), we have:

f(x(u))

f ′(x(u))
= ei + c2e

2
i + (2c22 − 4c3)e

3
i + ... (19)

(
f ′(x(u))

)2
= 1 + 4c2ei + (4c22 + 6c3)e

2
i + ... (20)

αf(x(u))

β + (f ′(x(u)))2

=
α

β
ei +

αc2
β
e2i +

(
αc3
β
− α

β2

)
e3i + ... (21)

f(x(u))

f ′(x(u))

αf(x(u))

β + (f ′(x(u)))2
= ei +

(
−c2 +

α

β

)
e2i + ... (22)

Thus,

y(u) = ζ +

(
c2 −

α

β

)
e2i +O(e3i ), (23)

ei+1 =

(
c2 −

α

β

)
e2i +O(e3i ). (24)

Hence, this proves the theorem. �



1640 TWMS J. APP. AND ENG. MATH. V.14, N.4, 2024

Thus, homotopic form of the method (abbreviated as MHCM) is given by:

y(u) = x
(u)
i −

H(x
(u)
i , t)

H′(x
(u)
i , t)

 1

1− α

(
H(x

(u)
i ,t)

β−
(
H(x

(u)
i ,t)

)2

)
 , (25)

where α, β are real parameters.

3. Dynamics Analysis

Here, we discuss the dynamical study of iterative methods MHCM and NHCM. For
details on the dynamical behavior of the iterative methods, one can consult [10], [11], [12].
To generate basins of attraction, we take grid 2000× 2000 of square [−2.5× 2.5]2 ∈ C. To
each root of (1), we assign a color to which the corresponding orbit of the iterative methods

starts and converges to a fixed point. Taking, color map as Jet. We use
∣∣∣f (x(u)i

)∣∣∣ < 10−3

as a stopping criteria and maximum number of iteration is taken as 25. Dark black
regions are colored if the orbit of the iterative methods does not converge to root after 25
iterations. As the dynamical planes of HCM depends upon the value of parameter t chosen.
For different value t ∈ [0, 1], we draw dynamical plane of MCHM. The method MHCM
further contains two real parameter α, β. For different values of α and β, the dynamical
planes of MHCM and NHCM graphed for the following non-linear function with auxilary
equation are f1(x) = sin(x)−x+1, g1(x) = sin(x)−x, f2(x) = cos(x)−4, g2(x) = x5+x+10
and f3(x) = cos(x) + sin(x)− 2x, g3(x) = x5 + x+ 10 respectively.

The basin of attraction of the MHCM is depicted in Figure 1(A-M) for various values
of the homotopic parameter t using the nonlinear functions f1(x) = sin(x)−x+1, g1(x) =
sin(x)−x respectively. We increase the t values from 0 to 1 by 0.1, which results in better
convergence behavior as color brightness grows. Figure also clearly illustrates how, as
the homotopic parameter values vary from 0 to 1, one function gradually transforms into
another and, at time t=0.5, obtains the perfect homotopic function picture in which neither
f1(x) nor g1(x) contribute. In Figure 1(A-T), we take parameter value α = 10, β = −5
while in Figure 1(G-L), we take α = 0.3 and β = −1.005.

The basin of attraction of the MHCM is depicted in Figure 2(A-M) for various values
of the homotopic parameter t using the nonlinear functions f2(x) = cos(x) − 4, g2(x) =
x5 + x + 10 respectively. We increase the t values from 0 to 1 by 0.1, which results in
better convergence behavior as color brightness grows. Figure also clearly illustrates how,
as the homotopic parameter values vary from 0 to 1, one function gradually transforms into
another and, at time t=0.5, obtains the perfect homotopic function picture in which neither
f1(x) nor g1(x) contribute. In Figure 2(A-T), we take parameter value α = 9, β = −5.01
while in Figure 2(G-L), we take α = 0.3 and β = −1.005.

The basin of attraction of the MHCM is depicted in Figure 3(A-M) for various values
of the homotopic parameter t using the nonlinear functions f3(x) = cos(x) + sin(x) −
2x, g3(x) = x5 + x + 10 respectively. We increase the t values from 0 to 1 by 0.1, which
results in better convergence behavior as color brightness grows. Figure also clearly illus-
trates how, as the homotopic parameter values vary from 0 to 1, one function gradually
transforms into another and, at time t=0.5, obtains the perfect homotopic function picture
in which neither f1(x) nor g1(x) contribute. In Figure 3(A-T), we take parameter value
α = 10, β = −5 while in Figure 3(g-l), we take α = 0.3 and β = −1.005.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure 1. (A) t = 0. (B) t = 0.1. (C) t = 0.2. (D) t = 0.3. (E) t = 0.4.
(F) t = 0.5. (G) t = 0.6. (H) t = 0.7. (I) t = 0.8. (J) t = 0. (K) t = 0.1.
(L) t = 0.2. (M) Perfect homotopic basins of attraction picture in which
both nonlinear functions i.e., f1(x) and g1(x) contribute equally. Clearly
shows the basins of attraction for generated by MCHM iterative scheme for
nonlinear functions f1(x) = sin(x)− x+ 1, g1(x) = sin(x)− x respectively
by employing different values of t.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure 2. (A) t = 0. (B) t = 0.1. (C) t = 0.2. (D) t = 0.3. (E) t = 0.4.
(F) t = 0.5. (G) t = 0.6. (H) t = 0.7. (I) t = 0.8. (J) t = 0. (K) t = 0.1.
(L) t = 0.2. (M) Perfect homotopic basins of attraction picture in which
both nonlinear functions i.e., f2(x) and g2(x) contribute equally. Clearly
shows the basins of attraction for generated by MCHM iterative scheme
for nonlinear functions f2(x) = cos(x)− 4, g2(x) = x5 + x+ 10 respectively
by employing different values of t.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure 3. (A) t = 0. (B) t = 0.1. (C) t = 0.2. (D) t = 0.3. (E) t = 0.4.
(F) t = 0.5. (G) t = 0.6. (H) t = 0.7. (I) t = 0.8. (J) t = 0. (K) t = 0.1.
(L) t = 0.2. (M) Perfect homotopic basins of attraction picture in which
both nonlinear functions i.e., f3(x) and g3(x) contribute equally. Clearly
shows the basins of attraction for generated by MCHM iterative scheme
for nonlinear functions f3(x) = cos(x) + sin(x) − x, g3(x) = x5 + x + 10
respectively by employing different values of t.
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The elapsed time for the generation of basin of attraction of the MHCM is depicted
in Figure 4(A-C) for various values of the homotopic parameter t using the nonlinear
functions f1(x) = sin(x)−x+1, g1(x) = sin(x)−x, f2(x) = cos(x)−4, g2(x) = x5 +x+10
f3(x) = cos(x) + sin(x) − 2x, g3(x) = x5 + x + 10 respectively. We increase the t values
from 0 to 1 by 0.1, which results in better convergence behavior as color brightness grows.
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Figure 4. (A) Elapsed time for the generation of basins of attraction for
f1(x) and g1(x). (B) Elapsed time for the generation of basins of attraction
for f2(x) and g2(x). (C) Elapsed time for the generation of basins of attrac-
tion for f3(x) and g3(x). (D) Elapsed time for the generation of basins of
attraction for different value of homotopic parameter t. The elapsed time
for the generation of basins of attraction of the nonlinear function using
different homotopic parameter values t, as shown in Figures 1-3.

In all figures from Figure 1-3, we observe that as the value of parameter t increase
from 0 to 0.5, the brightness in color increase which shows increase in convergence rate of
the proposed numerical scheme MHCM. After t = 0.5, the rate of convergence gradually
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decreases. This behavior shows the homotopic chance of one function to another. At
t = 0.5, we obtain such a function in which both functions either contributes equally or
vice versa. Similar behavior also observe in the lapsed time for the generation of the basins
of attractions for the nonlinear functions used in Figure 1-3. The parameter values used
in numerical scheme MCHM are α = 3, β = −1.0005.

4. Numerical Results

Here some numerical examples from engineering are considered to demonstrate the
performance of NHCM, MHCM and NM method All the estimations are done by Maple
18 with 128 digits floating point arithmetic and use the following stopping criteria for
estimating the roots:

(i) e(u) =
∣∣∣f (x(u))∣∣∣ <∈,

(ii) e(u) =
∣∣∣x(u+1) − x(u)

∣∣∣ <∈,
where e(u) represents the absolute error in approximation.

Engineering Application 1: Fractional Conversion

An expression describe in [12]

f1∗(x) = x4 − 7.79075x3 + 14.7445x2 + 2.58x− 1.67 (26)

is the fractional conversion of N and H feed at 250atm and 287K, where N stands for nitro-
gen and H for hydrogen gas. Non-linear equation (26) has two real roots −0.3481, 0.2778
(as shown in figure 5) and two conjugate complex roots are 3.9485 ± 0.3161i. For frac-
tional conversion our desired root is 0.2728 and we take p0 = 0.1 as initial guesses.To
approximates root of (26), we take two auxilary functions g1,1(x) = x + 1 and g1,2(x) =
sin(x)− x− 1 with ∈= 10−10 with 128 digit floating point arithmetic.

8-0.384094, 0.27776<

-2 -1 0 1 2 3 4

0

20

40

60

80

100

120

Figure 5. Location of the exact roots of the nonlinear function used in
engineering application 1
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80.129721<
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Figure 6. Location of the exact roots of the nonlinear function used in
engineering application 2

82.45238<

-4 -2 0 2 4

-50

0

50

100

150

Figure 7. Location of the exact roots of the nonlinear function used in
engineering application 3
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Figure 8. Location of the exact roots of the nonlinear function used in
engineering application 4
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Table.1: Comparison of HCMs for f1(x)

Method

∣∣∣x(u+1) − x(u)
∣∣∣ ∣∣∣f1∗ (x(u))∣∣∣ CPU ρ

g1,1(x) =x+1, u = 4, α = 1.1, β = 5.5

NHCM 2.1e-4 0.1e-9 0.034 1.99

MHCM 0.6e-11 0.0 0.016 2.1

NM 1.2e-5 1.2e-9 0.031 2.0

g1,2(x) = sin(x)−x−1,u = 4, α = 1.1, β = 5.5

NHCM 1.2e-5 0.1e-8 0.017 2.0

MHCM 0.6e-11 0.5e-18 0.015 2.0

NM 1.2e-5 1.2e-9 0.031 2.0

Table 1 shows the numerical results of engineering application 1. The dominance con-
vergence behavior and efficiency of MHCM over NHCM and NM are clearly illustrated
in Table 1. The CPU time and residual error of MCHM are both better than those of
NCHM and NM.

Figure 9(A,B) shows residual error of iterative schemes MHCM, NHCM, NM for non-
linear function with g1,1(x) and g1,2(x) respectively. Figure 9(a,b) clearly shows good
convergence behavior of MHCM over NHCM and NM on same number of iteration.

Engineering Application 2: Civil Engineering Problem

A worker in “Down to the Toilet Company” that makes floats for ABC commodes as
shown [13]. Specific gravity of 0.6N and a radios of 5.5cm is taking for the floating ball.
To find the depth x in meter for which the ball is submerged under water is given by

x3 − 0.165x2 + 3.993× 10−4 = 0

or

f2∗(x) = x3 − 0.165x2 + 3.993× 10−4 (27)

Non-linear equation (27) has three real roots 0.04374, 0.1464, 0.0624 as shown in figure
6. Our desire root is 0.0624 for which x0 = 0.08 is taken as initial guess and two auxilary
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function g2,1(x) =x+1 and g2,2(x) = cos(x)− 1 are taken.

Table.2: Comparison of HCMs for f1(x)

Method

∣∣∣x(u+1) − x(u)
∣∣∣ ∣∣∣f2∗ (x(u))∣∣∣ CPU ρ

g2,1(x) =x+1, k = 4, α = −0.01, β = −5.5

NHCM 0.5e-9 5.6e-16 0.03 2.0

MHCM 0.7e-10 5.7e-18 0.02 2.1

NM 3.1e-5 2.5e-12 0.01 2.0

g2,2(x) = cos(x)− 1,u = 4, α = −0.01, β = −5.5

NHCM 0.3e-9 0.5e-17 0.02 2.0

MHCM 0.3e-9 0.1e-18 0.01 2.0

NM 3.1e-5 2.5e-12 0.01 2.0

Table 2 shows the numerical results of engineering application 2. The dominance con-
vergence behavior and efficiency of MHCM over NHCM and NM are clearly illustrated
in Table 2. The CPU time and residual error of MCHM are both better than those of
NCHM and NM.

Figure 10(A,B) shows residual error of iterative schemes MHCM, NHCM, NM for non-
linear functions with g2,1(x) and g2,2(x) respectively. Figure 10(A,B) clearly shows good
convergence behavior of MHCM over NHCM and NM on same number of iteration.

Engineering Application 3: Chemical Engineering Problem

For a [H3O
+] , the acidity of a solution MgOH in Hcl is given by [14]

3.64× 10−11

[H3O+]
=
[
H3O

+
]

+ 3.6× 10−4, (28)

where [H3O
+] is hydronium ion concentration, Hcl is hydrocloric acid. we get the following

non-linear model by taking x = 104 [H3O
+] i.e.,

f3∗(x) = x3 + 3.6x2 − 36.4, (29)

(29) has two complex conjugate roots −3±2.3i and one real root 2.4 shown in Figure 7.
We want to approximate our desired result real root 2.4 with x0 = 2.3 and two auxiliary
functions g3,1(x) = (x+1)3 and g3,2(x) = ex+ 1 by taking ∈= 10−10 with 128 digit floating
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point arithmetic.

Table.3: Comparison of HCMs for f1(x)

Method

∣∣∣x(u+1) − x(u)
∣∣∣ ∣∣∣f3∗ (x(u))∣∣∣ CPU ρ

g3,1(x) = (x+1)3, u = 4, α = −0.01, β = −5.5

NHCM 0.9e-9 0.1e-18 0.016 2.0

MHCM 0.4e-10 0.5e-21 0.015 2.1

NM 1.2e-11 1.2e-19 0.031 2.0

g3,2(x) = ex + 1, u = 4, α = −0.01, β = −5.5

NHCM 0.9e-10 6.1e-20 0.017 1.9

MHCM 0.9e-10 0.5e-23 0.013 2.0

NM 1.2e-9 1.2e-19 0.031 1.9

Table 3 shows the numerical results of engineering application 3. The dominance con-
vergence behavior and efficiency of MHCM over NHCM and NM are clearly illustrated
in Table 3. The CPU time and residual error of MCHM are both better than those of
NCHM and NM.

Figure 11(A,B) shows residual error of iterative schemes MHCM, NHCM, NM for non-
linear function with g3,1(x) and g3,2(x) respectively. Figure 11(A,B) clearly shows good
convergence behavior of MHCM over NHCM and NM on same number of iteration.

Engineering Application 4: Civil Engineering Problem

In [15], [16] indicate a beam subject to a linearly increasing distributed load. The
non-linear equation for the resulting elastic curve is

f(x) =
ωo

120EIL

(
−x5 + 2L2x3 − L4x

)
. (30)

Taking f ′(x) = 0, to determine the point of maximum deflection i.e.,

ωo
120EIL

(
−5z4 + 6L2z2 − L4

)
= 0,

f4∗(x) =
ωo

120EIL

(
−5x4 + 6L2x2 − L4

)
. (31)

Then, substitute this value in (31) to determine the value of maximum deflection. Use
the following values in computation L = 600cm,E = 50, 000KN/cm3, I = 30, 000cm4 and
ωo = 2.5KN/cm The equation (31) has four exact roots ζ1 = −599.999, ζ2 = −268.328,
ζ3 = 268.328, ζ4 = 599.999 are shown in Figure 8. We have approximate our desire real root
2.4 with x0 = −575 and two auxilary function g4,1(x) = cos(x2) + 1 and g4,2(x) = ex−5
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by taking ∈= 10−10 with 128 digit floating point arithmetic.

Table.4: Comparison of HCMs for f1(x)

Method

∣∣∣x(u+1) − x(u)
∣∣∣ ∣∣∣f4∗ (x(u))∣∣∣ CPU ρ

g1,1(x) = cos(x2) + 1, u = 4, α = −0.01, β = −5.5

NHCM 1.3e-5 9.5e-15 0.014 1.9

MHCM 2.5e-5 0.1e-15 0.013 2.0

NM 2.5e-4 1.2e-15 0.015 2.0

g1,2(x) = ex−5, u = 4, α = −0.01, β = −5.5

NHCM 2.5e-4 3.5e-14 0.017 2.0

MHCM 2.5e-5 0.1e-16 0.016 2.1

NM 1.2e-4 1.2e-15 0.020 2.0

Table 4 shows the numerical results of engineering application 4. The dominance con-
vergence behavior and efficiency of MHCM over NHCM and NM are clearly illustrated
in Table 4. The CPU time and residual error of MCHM are both better than those of
NCHM and NM.
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Figure 9. (A) Error graph of MCHM, NCHM and NM method for g1,1(x).
(B) Error graph of MCHM, NCHM and NM method for g1,2(x). Demon-
strates the residual error for the iterative MHCM, NHCM, and NM schemes
for non-linear functions with g1,1(x) and g1,2(x), respectively. Figure
9(A,B) unambiguously illustrates the improved convergence behavior of
the MHCM over the NHCM and NM on the same number of iterations.

5. Results and Discussion

Here, we discuss the superiority of the numerical method MHCM over existing methods
in the literature in terms of stability, residual errors and computational time.

• Figures 1(A-M)-3(A-M) depict the dynamical behavior of the suggested numeri-
cal techniques for various nonlinear functions with varying homotopic parameter
values. Figure 1-3 clearly shows the improved rate of convergence for various t
values.
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Figure 10. (A) Error graph of MCHM, NCHM and NM method for
g2,1(x). (b) Error graph of MCHM, NCHM and NM method for g2,2(x).
Demonstrates the residual error for the iterative MHCM, NHCM, and NM
schemes for non-linear functions with g2,1(x) and g2,2(x), respectively. Fig-
ure 10(A,B) unambiguously illustrates the improved convergence behavior
of the MHCM over the NHCM and NM on the same number of iterations.
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Figure 11. (A) Error graph of MCHM, NCHM and NM method for
g3,1(x). (B) Error graph of MCHM, NCHM and NM method for g3,2(x).
Demonstrates the residual error for the iterative MHCM, NHCM, and NM
schemes for non-linear functions with g3,1(x) and g3,2(x), respectively. Fig-
ure 11(A,B) unambiguously illustrates the improved convergence behavior
of the MHCM over the NHCM and NM on the same number of iterations.

• Figure 4(A-D) indicates that the suggested numerical scheme MCHM has a better
elapsed time than NHCM and NM.
• Figure 5-8 shows the exact locations of the roots of the nonlinear functions, which

were used in engineering applications with a four decimal places precision.
• The residual error graph of the numerical solutions to the engineering problems

utilized is shown in Figures 9(A,B) and 12(A,B). In Figure 9-12, the MHCM’s
third iteration result error is clearly better than that of the NHCM and NM.
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Figure 12. (A) Error graph of MCHM, NCHM and NM method for
g4,1(x). (B) Error graph of MCHM, NCHM and NM method for g4,2(x).
Demonstrates the residual error for the iterative MHCM, NHCM, and NM
schemes for non-linear functions with g4,1(x) and g4,2(x), respectively. Fig-
ure 12(A,B) unambiguously illustrates the improved convergence behavior
of the MHCM over the NHCM and NM on the same number of iterations.

• The numerical results of the engineering application are shown in Tables 1-4. The
numerical results of all Tables clearly demonstrate that, for various homotopic
functions, our newly proposed homotopy method outperforms NHCM and NM in
terms of residual error, computational CPU time, errors in absolute functional
values, and computational order of convergence.

6. Conclusion

We have developed here a new two parametric family of quadratic convergence MHCM
for approximating all roots of (1). Numerical results from non-linear engineering model
clearly indicate the dominance efficiency and convergence behavior of our method MHCM
over NHCM and NM. Dynamical planes, CPU and error graph also support our the
dominance efficiency of MHCM over these classical methods.
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