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OPTIMAL (r,Q) MODELS CONSIDERING INVENTORY SHRINKAGE

G. Y. TUTUNCU1∗, L. L. ZHANG2, G. YUCE1,2, §

Abstract. Although inventory shrinkage negatively affects firms’ operations decisions
in nearly every type of industry, it is generally ignored in practice. Most of the available
mathematical models are not considering inventory shrinkage caused by lost or misplaced
inventory items, because of the mathematical complexity. Therefore, we develop new
(r,Q) models addressing shrinkage. Besides misplaced items, we consider perished or
lost items, which are common in the retail industry. We further propose an algorithm to
solve the models developed. To demonstrate the applicability of our models and solution
algorithm, we assume normal and exponential demand distributions. We show that
total inventory costs obtained using our models are significantly lower than those from
available models, which does not consider misplaced items and the sensitivity analysis
leads us to several managerial implications.

Keywords: Optimal Inventory Systems, (r,Q) Models, Misplaced items, Lost-sales, Back-
orders.

AMS Subject Classification: 90-10, 90B05, 90B06, 93E20, 49K45.

1. Introduction

Inventory shrinkage has always been a serious challenge in supply chain management
liable to occur at any phase vulnerable to manual operational mistakes, including manu-
facturing, distribution, warehousing, and retailing ([27], [1], [26]). It is recognised as one
of the two major sources for inventory inaccuracy, i.e., the discrepancy between physical
and recorded inventory levels ([23], [7]). Thus, inventory shrinkage not only devastatingly
affects the decisions on supply chain operations (e.g., manufacturer’s production planning
decisions) but also escalate supply chain total costs and stock-out threshold ([8], [6], [23]).
Items misplaced in stores are unavailable to customers until found. Misplaced items, con-
sequently, has emerged as a common and expensive problem in the retail setting. As early
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Department of Mathematics, 2024; all rights reserved.

1736



G. Y. TUTUNCU, L. L. ZHANG, G. YUCE: OPTIMAL (R,Q) POLICY CONSIDERING... 1737

as the 90s, the sales losses due to products being in storage areas rather than the selling
floor amount to $560-960 million per year in the United States supermarket industry [5].
Misplaced items also cause 25-30 % of grocery stock-outs, revealed in a study by [9]. In
their longitudinal study, [21] showed that one-standard deviation increase in misplaced
items leads to a loss of approximately 7 % of the net income generated by an average
retail store. Similarly, [17] found that misplaced items reduced profits by 25 % in their
case study of a leading retailer. A relatively recent study [2], concluded that there was an
estimated 10 % profit reduction due to inventory errors.

Several common reasons cause inventory misplacement in the retail setting, including
(i) customers picking up products from one location and later replacing them in another
location; (ii) staff not placing products on the correct shelf or at the appropriate time;
and (iii) staff losing products in a backroom or another storage area ([18], [31], [21]).
Due to the negative influences of misplaced items on the performance of retail stores
and the whole supply chains, the use of RFID technology in tracking/locating items has
been proposed as a solution ([20], [3], [22]). However, due to the difficulties in fully
eliminating the above common execution errors made by either customers or staff, despite
the use of RFID, misplaced items become remain the norm rather than an anomaly in
the retail settings ([4], [27]). In fact, “implementing RFID could eliminate part of the
shrinkage and misplacement errors” ([23]) but the main drawback is that it demands
heavy investment costs. Due to the cost requirements, many firms cannot afford it and
only large companies implement it [28]. At the end of the day the main aim of this study
is to show that instead of using non environmental friendly technologies such as RFIDs,
using mathematical approaches can solve these important practical issues in inventory
management.

In literature, most of the available inventory models, whether periodic review systems or
continuous review systems, do not consider misplaced items; but are based on the common
assumption that the actual and recorded inventories are the same, as pointed out in ([7],
[18], [6]). Thus, the traditional models may not be able to provide supply chain partners
with practical decision-making support and may distort inventory decision-making ([23]).
To bridge this gap, in an earlier study we ([29]) proposed some improved (r,Q) models
with misplaced items. Whereas, in this study we moved one step forward and investigate
(r,Q) policy for continuous review systems while considering inventory shrinkage in more
broader perspective. We study the (r,Q) models considering both perished or lost items,
besides misplaced items,which is often used for fast moving products and is widely adopted
in the retail settings ([13]).

In practice, customers react differently to stock-out situations. For products, such as
diapers, cosmetics, and feminine hygiene, customers walk away immediately and purchase
from other sources ([10]). In such situations, unsatisfied demand is lost, resulting in
the lost sales. For other products (e.g., coffee, shampoo, pet food), customers are more
willing to delay their purchase until the products are available in the stores again. Such
behaviour allows the stores to back order the products, generating backorders. There are
practical situations involving a mixed phenomenon of the above two, as pointed out in ([15],
[24]). For example, e-commerce companies usually perform as suppliers for large business
customers as well as serving their own individual customers. When the inventory is out
of stock, the individual customers will likely switch their purchasing to other websites,
whilst the large business customers will wait for reasons including, price discounts and
constraints in the contracts. To facilitate inventory decision making as comprehensively
as possible, we, thus, develop new (r,Q) models considering misplaced items for all three
situations,lost-sales, backorders, and the mixed cases involving both of these.
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To summarise, unlike most of the available models 1, which assume the same actual
and recorded inventory levels, we develop the (r,Q) models which take into account the
inevitability of misplaced items. In addition, the models are developed for all three existing
situations in practice. Therefore, this study makes the following four contributions to both
the existing literature and practice. First, we develop the inventory profiles involving
misplaced items in the three situations. Second, we develop the new (r,Q) models for all
the three cases, including lost-sales, back orders, and a mixture of both, thus providing
inventory decision-making support for all situations encountered. Third, we develop an
algorithm to solve the models developed. Finally, based on the numerical examples and
sensitivity analysis, we show much lower total inventory costs obtained based on our models
compared to those from the model that does not consider misplaced items. Additionally,
we arrive at several managerial implications such as firms’ flexibility to allow adjustment
of the backordering and shortage costs to minimise inventory costs.

In the following section, we detail the problem context, notations, and the new (r,Q)
models involving misplaced items for the three cases. In Section 3, we present the pseudo
code algorithm to solve the models. We conduct numerical examples to demonstrate the
applicability of our models and solution algorithm in making practical inventory decisions.
Sensitivity analysis allows managerial implications and we conclude the paper in Section
5 by highlighting the potential avenues for future research.

2. Notation and models

In an (r,Q) inventory system, the inventory is reviewed continuously, and an order of
Q units of products is placed whenever the inventory position falls to or below the reorder
point r. In the system, due to misplacement, not all products are available on the shelves
for purchase. Moreover, some of the misplaced items perish or are lost, thus not being
available for purchase at all ([19], [20]). To model the misplaced and lost items, in this
study, we introduce two parameters: θ and β. In such a system, it is very important to
determine the values of r and Q to minimise the total inventory cost. In the literature,
a continuous demand is frequently used to develop inventory models ([16], [12]) as it is
in this model. In addition, we assume at most one outstanding order at any given time.
This assumption is met in the practical situations where an ordering cost is relatively high
and a lead-time is shorter than an order cycle ([25], [12]). For example, products that
are transported by air have a short lead-time but a high ordering cost. As a result, there
is often a large difference between order quantity and reorder point, and the inventory
system seldom has more than one outstanding order. Last, we assume that the lead-time
is the same in any replenishment cycle and that in each cycle, the reorder point is non-
negative and constant, as often adopted in literature ([14], [30], [16]). The below notation
is used to develop the new (r,Q) models.

r : Reorder point
Q : Order quantity
A : Fixed ordering cost
h : Inventory holding cost per unit per replenishment cycle
s : Shortage cost per unit
o : Backordering cost per unit
c : Unit purchasing price
Ccycle : Average inventory cost per replenishment cycle

1To the best of our knowledge, ([23]) is the only article where the authors developed a News-vendor
model considering misplaced items. The authors considered the lost-sales case, instead of all the three.
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D : Expected annual demand
µ : Expected demand during lead-time
C(r,Q): Expected total annual inventory cost
θ, θ ∈ [0, 1]: Percentage of products available for sale
β, β ∈ [0, 1]: Percentage of misplaced items that are perished or lost
µθ : Expected proportion of products available for sale
µβ : Expected proportion of misplaced items that are perished or lost
g(θ) : The probability distribution of θ.
X : Random variable denoting the total demand during lead-time
f(X) : Probability density function of X
F (X) : Cumulative distribution function of X
ā(r) : Expected on-hand inventory at the end of each cycle
s̄(r) : Expected number of shortages per cycle
b̄(r) : Expected number of backordered products per cycle
α : Percentage of back ordered products in the mixed case

In the following sections, we describe the problem contexts for the three cases and
develop the corresponding inventory profiles. In view of the similar logic in model devel-
opment, we present the model details for the mixed case of lost-sales and backordering,
whereas the details for the other two cases are provided in Appendixes A and B, respec-
tively.

2.1. (r,Q) models involving misplaced items for the cases of lost-sales and back-
ordering. In the case of lost-sales, the excess demand is lost, thus incurring a shortage
cost. When Q products are ordered, θQ products are available on the shelves for purchase;
(1− θ)Q products are misplaced and β(1− θ)Q misplaced products are perish or are lost.
(1−β)(1−θ)Q products are, thus, misplaced and might reappear on other shelves or in the
backroom. The corresponding inventory profile is shown in Fig. 1. At time 0, an order Q
is received. When the inventory drops to r at time t0, the actual inventory level is θr due
to the inventory misplacement. An order Q is placed at this time (and received at time
t3). During the delivery lead-time, the actual inventory decreases and reaches 0 at time
t1, which is earlier than time t2 when the inventory level drops to 0. Thus, the lost sales
occur earlier at t1. Because β(1− θ)Q misplaced products are lost, only (1− β)(1− θ)Q
misplaced products reappear later, thus being available for purchase again, as shown in
the figure.

Because θ and β can be either deterministic or stochastic, we develop the new (r,Q)
models involving misplaced items considering two situations. In the first situation, both θ
and β are deterministic, whereas in the second, both θ and β are stochastic with uniform
distributions and they are independent. The developed models involving misplaced items
considering the above two situations of θ and β are provided in Appendix A.

In the second case, when the system is out of stock, the excess demand is backordered.
The inventory profile in this case is similar to the lost-sales case except that backordering
takes place at time t1. Similarly, the (r,Q) models involving misplaced items for the case
of backordering are developed considering the same two situations of θ and β (see model
details in Appendix B).

2.2. (r,Q) models involving misplaced items for the mixed case of lost-sales and
backordering. In the mixed case, when the system is out of stock, some excess demand
is back ordered, and the rest is lost. In this study, we introduce a parameter α to represent
the percentage of backordered demand. (1 − α), thus, represents the percentage of lost
sales, as shown in the inventory profile in Figure 2. The (r,Q) models for the mixed case
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Figure 1. Inventory profile in the case of lost-sales.

of lost-sales and backordering are developed considering the same two situations of θ and
β.

Figure 2. Inventory profile in the mixed case.

Situation 1: θ and β are both deterministic.
When unsatisfied demands are all lost, the number of shortages at the end of each cycle

is max[0, X − rθ]. When partial unsatisfied demands are lost at a percentage (1−α), the
number of shortages at the end of each cycle is max[0, (1−α)(X− rθ)]. With the interval
of shortages, the expected number of shortages per cycle s̄(r) is calculated as follows:

s̄(r) =

∫ ∞
θr

(1− α)(X − θr)f(X)dX (1)

When all unsatisfied demands are backordered, the number of backordered products at
the end of each cycle is max[0, X − rθ]. When these demands are partially backordered
at a percentage α at a unit backordering cost o. The expected number of backordered
products per cycle b̄(r) can be computed as follows:
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b̄(r) =

∫ ∞
θr

α(X − θr)f(X)dX (2)

At the end of each cycle, the on-hand inventory is max[0, rθ − X] + (1 − β)(1 − θ)r.
With the interval of the on-hand inventory, the expected on-hand inventory ā(r) can be
obtained using Eq. (3).

ā(r) =

∫ θr

0

(θr −X)f(X)dX + (1− β)(1− θ)r

=

∫ ∞
0

(θr −X)f(X)dX +

∫ ∞
θr

(1− α+ α)(X − θr)f(X)dX + (1− β)(1− θ)r

=

∫ ∞
0

(θr −X)f(X)dX +

∫ ∞
θr

(1− α)(X − θr)f(X)dX

+

∫ ∞
θr

α(X − θr)f(X)dX + (1− β)(1− θ)r

= s̄(r) + b̄(r)− µ+ r − βr + θβr (3)

We know that when all the lost sales are backordered then the net inventory and the on
hand inventory are not same. Since in our model some of the lost sales are backordered
and some of them are shortage we should reconsider the net inventory level. Therefore, for
the expected number of products which are backordered and for which there is a shortage
and the expected on-hand inventory per cycle above, the average cost per cycle Ccycle
should consider the net inventory level. In our case the net inventory level is equal to the
average inventory level (Equation 3) minus the average backorder and can be computed
as follows:

Ccycle = A+ cQ+ h
Q

D
(
Q

2
+ s̄(r)− µ+ r − βr + θβr) + ss̄(r) + ob̄(r)

+ c(1− θ)βQ (4)

Based on the above average cost per cycle, the average annual cost C(r,Q) can be
calculated using Eq. (5) below.

C(r,Q) =
AD

Q
+ cD(1 + β − θβ) + h

(
Q

2
+ s̄(r)− µ+ r − βr + θβr

)
+
(sD
Q

)
s̄(r) +

(
oD

Q

)
b̄(r) (5)

C(r,Q) average annual cost is convex when condition (E.8) is satisfied. The proof is
presented in Appendix E. To minimise C(r,Q), we first obtain its partial derivatives with
respect to r and Q.

∂C

∂Q
= −AD

Q2
+
h

2
− oDb̄(r)

Q2
− sDs̄(r)

Q2
= 0 (6)

∂C

∂r
= h

(
∂s̄(r)

∂r
+ 1− β + θβ

)
+
D

Q

(
s
∂s̄(r)

∂r
+ o

∂b̄(r)

∂r

)
= 0 (7)

For a given r, Eq. (6) yields the optimal Q value, as shown in Eq. (8) below.
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Q =

√
2D(A+ ob̄(r) + ss̄(r))

h
(8)

For a given r, Eq. (7) yields the complementary cumulative distribution of X evaluated
at the optimal r, as shown in the equation below.

1− F (θr) =
hQ(1− β + θβ)

θ(hQ(1− α) +Ds(1− α)− αoD)
(9)

Based on Eq. (9), the optimal value of r can be obtained as follows:

r =

F−1
(

1− hQ(1−β+θβ)
θ(hQ(1−α)+Ds(1−α)+αoD

)
θ

(10)

Eqs (8 & 10) minimise C(r,Q), thus being the optimal inventory policy in this situation.

Situation 2: θ and β are both stochastic with standard uniform distributions.
Being a random variable, θ has an upper bound Uθ, a lower bound Lθ, a probability dis-
tribution function g(θ), and an expected average µθ. Similarly, β has an expected average
µβ. In accordance with the fact that some excess demands are backordered, and some are
lost, b̄(r) and s̄(r) can be calculated using the equations below.

b̄(r) =

∫ Uθ

Lθ

∫ ∞
θr

α(X − θr)f(X)g(θ)dXdθ (11)

s̄(r) =

∫ Uθ

Lθ

∫ ∞
θr

(1− α)(X − θr)f(X)g(θ)dXdθ (12)

Accordingly, at the end of each cycle, the expected on-hand inventory ā(r) can be
computed using Eq. (13). See the derivation details in Appendix C.

ā(r) = b̄(r) + s̄(r)− µ+ r − µβr + µθµβr (13)

With the expected on-hand inventory per cycle above, the average cost per cycle Ccycle
can be obtained as follows:

Ccycle = A+ cQ+ h
Q

D

(
Q

2
+ s̄(r)− µ+ r − µβr + µθµβr

)
+ ob̄(r)

+ ss̄(r) + c(1− θ)βQ (14)

Based on the above average cost per cycle, the average annual cost C(r,Q) can be
calculated using Eq. (15) below.

C(r,Q) =
AD

Q
+ cD(1 + β − θβ) + h

(
Q

2
+ s̄(r)− µ+ r − µβr + µθµβr

)
+

(
oD

Q

)
b̄(r) +

sD

Q
s̄(r) (15)

Similarly, we first obtain the partial derivatives of C(r,Q) with respect to r and Q
below.
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∂C

∂Q
= −AD

Q2
+
h

2
− oDb̄(r)

Q2
− sDs̄(r)

Q2
= 0 (16)

∂C

∂r
= h

(
∂s(r)

∂r
+ 1− µβ + µθµbeta

)
+
D

Q

(
s
∂s̄(r)

∂r
+ o

∂b̄(r)

∂r

)
= 0 (17)

For a given r, Eq. (16) yields the optimal Q value, as shown in Eq. (18) below.

Q =

√
2D(A+ ob̄(r) + ss̄(r))

h
(18)

For a given r, Eq. (17). yields the complementary cumulative distribution of X (Eq.
(19)), evaluated at the optimal r.

∫ Uθ

Lθ

θ(1− F (θr))g(θ)dθ = ϕ(r) =
hQ(1− µβ + µβµθ)

hQ(1− α) +Ds(1− α) + αoD
(19)

Similarly, the optimal value of r can be obtained using the below equation.

r = ϕ−1
(

1− hQ(1− µβ + µθµβ)

hQ(1− α) +Ds(1− α) + αoD

)
(20)

Eqs (18 & 20) minimise C(r,Q), thus being the optimal inventory policy in this situa-
tion.

As shown in the new (r,Q) models in different situations of the three cases, the optimal
order quantity Q is affected by the unit inventory holding cost, shortage (or backordering)
cost, expected demand, fixed ordering cost, and expected number of shortages (or back-
ordered products) per cycle. The unit inventory holding cost, shortage (or backordering)
cost, expected demand, and fixed ordering cost are given and known, whilst the expected
shortages (or backordered products) per cycle is to be calculated and is related to the
reorder point r. In the mixed case, the expected shortages (or backordered products) are
also affected by the percentage of backordered items α. r in all cases/situations is affected
by both θ and β which we introduced to model the proportion of products available for
sale and the proportion of perish or are lost misplaced items. Similarly, in the mixed
case, r is also affected by α. Thus, we conclude that θ, β, and α are very important in
determining the reorder point r, which, in turn, affects the optimal order quantity and
total inventory cost.

3. Solution algorithm

We develop a solution algorithm to solve the new (r,Q) models for obtaining optimal
order quantities and reorder points. Due to model development similarity, the algorithm
is able to solve all the three models corresponding to the three cases. It has three general
steps. In the first step, the expected number of shortages, reorder point, and order quantity
are all initialised to 0; the other parameter values are set including A,D, h, µ (mean
demand), σ (standard deviation of demand), o, s, α, θ, and β. In the second step, random
new values are assigned to the initialised reorder point and order quantity, respectively.
Subsequently, a new order quantity is computed based on Eq. (8) for deterministic θ
and β in the mixed case (or the relevant equations in other cases) with the above newly
assigned reorder point value. If the computed order quantity is the same as the above
newly assigned one, the computation moves to the third step. If not a new reorder point
is computed based on Eq. (10) for deterministic θ and β in the mixed case (or the relevant
equations in other cases) with the computed order quantity. The second step repeats
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until a different newly computed reorder point is identified. In the third step, the newly
computed reorder point and order quantity are output as the optimal values. While we
summarise the algorithm above, the pseudo code is provided in Algorithm 1.

Algorithm 1 The solution algorithm in pseudo code

Initialise:
b̄(r0) = 0;
Qn = 0;
rn = 0;
Input A,D,h, µ, δ, o, s, α, θ, β:
Do:
Q0 = Qn;
r0 = rn;

(∗)Qn =

√
2D(A+ob̄(r0)+ss̄(r0))

h ,

if (Qn = Q0) then break;

(∗∗)rn = F−1

(
1− hQn(1−β+θβ)

θ(hQn(1−α)+Ds(1−α)+αoD)

)
/θ while (rn 6= r0);

Output:
Q∗ = Qn;
r∗ = rn;

4. Numerical examples and sensitivity analysis

We carry out numerical examples to demonstrate the applicability of our models con-
sidering misplaced items for all three cases. (Because the results for the other two cases
have very similar characteristics, for ease of communication without repetition, we present
the results pertaining to the mixed case involving both lost-sales and backorders.) In the
examples, there are several settings regarding the demand as well as θ and β. More specif-
ically, the demand follows either normal distribution or exponential distribution; θ and
β are either deterministic or uniformly distributed. In these examples, the percentage of
backordered items α is 0.8; the other common parameters include the expected annual
demand: 10000, mean and standard demand distribution: 300 and 40, fixed ordering cost:
70, unit-purchasing cost: 2, inventory holding cost: 0.6, and shortage/backordering cost:
1.5. The source of these parameters and values is ([11]) in which misplaced items were
not considered. The solution algorithm is coded in R on an Intel(R) Core(TM) i7-8750H
CPU @ 2.20 GHz 2.21 GHz and 24 GB RAM.

4.1. Results. When the demand follows the normal distribution, we obtain the results
for both deterministic and uniformly distributed θ and β. More specifically, we calculate
the optimal order quantity Q∗, reorder point r∗, and total inventory cost TC∗ for two
random values of θ and β: θ=0.6 and β=0.2 in the deterministic case and two random
mean values of θ and β: µθ = 0.6, and µβ = 0.2 in the stochastic case. The results are
provided in Table I. We also calculate the optimal order quantity, reorder point, and total
inventory cost using the original model without involving misplaced items in (e.g., [11])
and the same common parameter values above. (The derivation of optimal order quantity,
reorder point, and total inventory cost from the original model is provided in Appendix
D.) The results are provided in Table I as well.

As shown in the table, the total inventory costs from our model when θ and β are either
deterministic or stochastic are both lower than the cost obtained from the original model.
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Table 1. Results when demand follows the normal distribution.

Q∗ r∗ TC∗ %TC decrease

Our model
θ = 0.6, β = 0.2 1556 589 22678.7 11.7
µθ = 0.6, µβ = 0.2 2696 353 23243.6 9.5

The original model with-
out involving misplaced
items

1545 362 25694.4 -

Compared with the cost obtained based on the original model, the decreases in the total
inventory costs obtained based on our model are 11.7 % and 9.5 % (as shown in the last
column) for deterministic and uniformly distributed θ and β, respectively. In view of the
significant cost decrease, we stress that it is of paramount importance for practitioners to
consider misplaced items when making inventory decisions. This is especially true when
the percentage of misplaced items is unknown, thus being stochastic. This is because
with an unknown percentage of misplaced items, higher total inventory costs might be
incurred, as indicated by the lower cost decrease percentage in the last column in Table I.
Our model can guide such practical inventory decisions. We also calculate the results when
the demand follows the exponential distribution for both deterministic and stochastic θ
and β. These results have similar characteristics to the normal distribution of the demand.
Thus, for illustrative simplicity, we present the above results corresponding to the normal
distribution of the demand.

4.2. Performance analysis of the solution algorithm. To analyse the performance of
our algorithm with respect to robustness, we test 10 times a base example, which includes
the above common parameter values, the normal distribution of demand, θ (0.6), and β
(0.2). We obtain 10 optimal order quantity values and reorder point values, as shown in
Table II. The average, highest, and lowest optimal order quantities are 2694.5, 2703. 8,
and 2677.3, respectively. The increase/decrease percentage between the highest/lowest
and the average is 0.3 %/0.6 %. Regarding the reorder point, the average, highest, and
lowest values are 352.8, 357.1, and 350.6, respectively. The increase/decrease percentage
between the highest/lowest and the average is 1.2 %/0.6 %. We also test other base
examples for the normal distribution of the demand and exponential distribution of the
demand and obtain very small increase/decrease percentages of optimal order quantity
and reorder point. These insignificant changes show that our solution algorithm is robust.

Table 2. Robustness analysis result of the solution algorithm.

T#1 T#2 T#3 T#4 T#5 T#6 T#7 T#8 T#9 T#10
Q∗ 2694.8 2695.8 2692.5 2699.8 2700.7 2698.0 2687.4 2677.3 2694.3 2703.8
r∗ 352.8 353.3 352.5 351.5 351.3 352.0 354.6 357.1 352.9 350.6

Average Increase percentage (%) Decrease percentage (%)
Q∗ 2694.5 0.3 % 0.6 %
r∗ 352.8 1.2 % 0.6 %

4.3. Sensitivity analysis. We carry out various sensitivity analysis to investigate how
the changes in pairs of parameters and in individual parameters affects the total inventory
cost. The parameter pairs include θ and β as well as backordering cost (o) and shortage cost
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(s); the individual parameters are o, s, α, and β. Based on the results, we draw managerial
implications. We first carry out sensitivity analysis to examine the influence of θ and β
on the total inventory cost for both types of demand distribution. More specifically, we
calculate the total inventory cost for various combinations of different values (or mean
values) of θ and β. (Note that all the total inventory cost values are lower than the
corresponding costs obtained using the original model.) When θ and β are deterministic,
θ values range from 0.2 to 1 at a step of 0.1 and β values from 0 to 1 at the same step.
When θ and β are uniformly distributed, µθ ranges from 0.2 to 1 at a step of 0.1 and µβ
from 0 to 1 at the same step. In the analysis, we change the values (or mean values) of θ
and β, but all the other parameter values are unchanged. Because of the similar patterns
in the results of both normal and exponential distributions of the demand, for illustrative
simplicity, Figure 3 provides the results corresponding to the normal distribution of the
demand and for both deterministic and uniformly distributed θ and β.

Figure 3. Total inventory cost changes for deterministic and uniformly
distributed θ and β

As shown in the figure, higher total inventory costs are incurred when θ and β are
stochastic than when they are deterministic. More specifically, for the same values of
θ − β pairs and µθ − µβ pairs, there are higher inventory costs corresponding to µθ − µβ
pairs. If we take a random case: θ = 0.7 and β = 0.3/µθ = 0.7 and µβ = 0.3 as
an example. The corresponding total inventory costs are 22827 and 23230, respectively.
This is understandable because of uncertainties about θ and β values. The managerial
implication reached based on this result is as follows. θ and β uncertainties affect the total
inventory cost. As a result, to reduce inventory costs, companies should adopt suitable
approaches and technologies to better track and control the misplaced and lost items in
each replenishment cycle in order to obtain values of θ and β. Additionally, when θ and
β are either deterministic or stochastic, we observe a general trend in total inventory cost
changes, that is, the total inventory cost increases in β and decreases in θ, as shown in the
figure. This trend is reasonable as θ decreases, more items are misplaced; as β increases,
more misplaced items are lost.Both these trends result in reduced sales, which, in turn,
lead to higher total inventory costs. As shown in the figure, when θ = 1/µθ = 1 (i.e., all
items are available for sale), the total inventory cost: 20964 is the lowest. At the opposite
extreme: θ = 0.2 and β = 1/µθ = 0.2 and µβ = 1 (i.e., all misplaced items are lost),
the corresponding total inventory cost: 36964/38127 is the highest. These results leads
to the following implication. θ and β are very important for minimising companies’ total
inventory costs. In light of their importance, companies should reduce β while increasing
θ.
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Moreover, as shown in the figure, the total cost does not change equally in θ and β. It
changes quicker in β than in θ. For example, the costs are 24250 (when θ=0.6 and β=0.4)
vs. 24114 (when θ=0.5 and β=0.3). In another example, the costs are 24823 (when µθ=0.6
and µβ=0.4) vs. 24816 (when µθ=0.5 and µβ=0.3). As shown in these examples, although
the values of θ/µθ increase (indicating more items are available for sale), the total costs
increase due to the increasing values of β/µβ (indicating more misplaced items are lost).
This result is understandable. This is because some of the misplaced items (i.e., 1− θ) are
found later, thus becoming available for sale again. To conclude, compared with β, θ affects
the total inventory cost at a lower magnitude. Regarding this, companies should develop
effective solutions to reduce the number of misplaced items and to prevent them from
becoming lost or perished. Additionally, we also conduct sensitivity analysis with respect
to various combinations of o and s. Similarly, when we conduct the analysis, we fix the
values for all the rest parameters and only change the backordering cost and shortage cost
when the demand follows either the normal or exponential distribution. In the analysis,
both the backordering cost and the shortage cost are changed from 0.5 to 9.5 at a step of
1. We obtain the results for both types of demand distributions. Similarly, for illustrative
simplicity, we provide the results when the demand follows the normal distribution for
deterministic and uniformly distributed θ and β in Figure 4. Corresponding to the results
in these two figures, both the deterministic values of θ and β and the mean values of
uniformly distributed θ and β are 0.6 and 0.2. (Note that the other random values (or
mean values) lead to very similar patterns of the results.)

Figure 4. Total inventory cost changes caused by different backordering
and shortage costs

As shown in the figure, the total cost change has a very similar behaviour for determin-
istic and stochastic θ and β. That is, the total cost increases in o and s in both situations.
The difference is that the costs are higher for stochastic θ and β. In our results, the highest
cost values are 22706 for deterministic θ and β and 24922 for stochastic θ and β. The cor-
responding o and s values (or mean values) are all 9.5. Similarly, this result is explainable
in the uncertainty associated with θ and β. Regarding this, a similar managerial impli-
cation is reached: companies should aim to obtain values of θ and β so as to incur lower
total inventory costs. In addition, as shown in the figure, the total cost changes quicker in
o than in s in either situation because this analysis is conducted when α = 0.8 indicating
that a larger portion of excess demand is back ordered. The sensitivity analysis for differ-
ent α values indicate that whether the total cost changes in these two parameters is equal,
or faster in one than the other. More specifically, when α = 0.5, the cost changes equally
in two parameters; when α > 0.5/α < 0.5, the cost changes quicker/slower in o than in s.
This result is understandable because when α > 0.5/α < 0.5/α = 0.5 as compared with
the total shortage cost, the total backordering cost plays a more/less/equal important role
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in the total cost. In accordance with this, the total cost changes more quickly/slowly /
in o than in s or equally. These results leads to the following implication. Companies
should determine suitable backordering and shortage costs to optimise the total inventory
costs,regardless of whether they can predetermine the percentage of backordered excess
demand. Our models and solution algorithm can facilitate such decision making. A careful
examination of the results in either situation leads to the following observations. First,
same cost values are incurred for two different combinations of o and s. Second, there is
a pattern in these same inventory costs. We provide below some examples of same costs
and the corresponding o and s combinations when θ and β are deterministic. The total
cost 22676 is incurred when o = 0.5 and s = 4.5 or when o = 1.5 and s = 0.5; 22693
is incurred when o = 3.5 and s = 5.5 or when o = 4.5 and s = 1.5; 22700 is incurred
when o = 6.5 and s = 6.5 or when o = 7.5 and s = 2.5; 22703 is incurred when o = 7.5
and s = 9.5 or when o = 8.5 and s = 5.5. We describe the pattern as follows: The total
inventory cost for a pair of o (o 6= 9.5) and s (s > 3.5) is the same for the other pair of
o + 1 and s − 4. (Note: For different ranges of the two costs and for different increment
steps, the pattern will be different. i.e., the pattern depends on the ranges and increment
steps.) These two observations, lead to the following implication: in practice, companies
generally have sufficient flexibility to adjust the backordering cost and shortage cost based
on their specific situations, and can minimise the total inventory costs.

Finally, we also conduct sensitivity analysis to examine the influence of individual pa-
rameters, including o, s, α, and β, on the total inventory cost. Similarly, when we carry
out the analysis, we fix all the other parameters except the values of the parameter in
consideration. The results obtained are in line with practice. More specifically, the total
inventory cost increases with the increase of o or s or β, but decreases with the increase
of the percentage of backordered items (i.e., α).

5. Conclusions

Due to manual operational errors, inventory misplacement is inevitable in supply chains,
particularly in the retail industry. The inventory decisions which ignore misplaced items
deteriorate firms’ business performance by increasing supply chain costs and stock-out
threshold, as pointed out in (e.g., [23]). Despite this fact, most available inventory mod-
els assume identical actual and recorded inventory records,thus ignoring inventory mis-
placement. In this study, therefore, we developed new (r,Q) inventory models, involving
misplaced items for continuous review systems in the retail industry. In practice, some
misplaced items inevitably perish or are lost, and thus, we considered this misplaced items
that are perished or lost in our model development. Moreover, in our model development
context, we considered three situations in which excess demands are lost, backordered,
or partially backordered and partially lost, which are the possible situations in the retail
industry. Involving all three possible situations increases the applicability of our study.
We also proposed a solution algorithm to solve the new models and to obtain optimal
order quantities and reorder points in each situations.

In our numerical examples, we considered both normal distribution and exponential
distribution of demands, as well as both deterministic and stochastic θ and β. The results
from various combinations of different cases and situations are consistent, and all the total
inventory costs are lower than in cases, where misplaced items are unaccounted for. This
has demonstrated that our theoretical (r,Q) models are valuable in guiding practition-
ers in inventory decisions, thus lowering inventory costs. The results from analysing the
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performance of the solution algorithm has highlighted the robustness of our solution algo-
rithm.The sensitivity analysis results, reveal several managerial implications, for example,
companies should obtain values of θ and β in order to minimise the total inventory costs.

Our models have demonstrated a superior capability to help practitioners with practical
inventory decision making by considering misplaced items, yet these they can be further
enhanced. Currently, emission abatement efforts are the focus in many aspects of supply
chains. How emission control can be integrated into the models is an interesting and highly
topical issue that deserves attention in the future. Furthermore, customer satisfaction is
the ultimate goal of many organisations. In this regard, it is important to understand
how customer satisfaction can be integrated into the models. Involving emission control
and customer satisfaction may require new solution algorithms, to be developed to solve
the enhanced models. Additionally, we targeted continuous review systems in this study.
Future efforts might be directed to periodic review systems, taking into account the above
practical issues, including inventory misplacement, emission reduction, and customer sat-
isfaction. Furthermore, longitudinal studies could provide empirical verification of the
enhanced inventory models for different review systems.

Appendix A. (r,Q) models involving misplaced items for the case of lost
sales

Situation 1: θ and β are both deterministic.
In this situation, the number of shortages at the end of each cycle is max[0, X − rθ].

With the interval of the shortage, s̄(r) is calculated as follows:

s̄(r) =

∫ ∞
θr

(X − θr)f(X)dX (A1)

At the end of each cycle, the on-hand inventory is max[0, rθ−X]. With the interval of
the on-hand inventory, the expected on-hand inventory: ā(r) is calculated using Eq. (A2).

ā(r) =

∫ θr

0

(θr −X)f(X)dX + (1− β)(1− θ)r

=

∫ ∞
0

(θr −X)f(X)dX +

∫ ∞
θr

(X − θr)f(X)dX + (1− β)(1− θ)r

= s̄(r)− µ+ r − βr + θβr (A2)

With the expected number of shortages per cycle and the expected on-hand inventory
above, Ccycle can be calculated as follows:

Ccycle = A+ cQ+ h
Q

D

(
Q

2
+ ā(r)

)
+ ss̄(r) + c(1− θ)βQ

= A+ cQ+ h
Q

D

(
Q

2
+ s̄(r)− µ+ r − βr + θβr

)
+ ss̄(r) + c(1− θ)βQ (A3)

With Ccycle, the average annual cost: C(r,Q) is obtained using the equation below.
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C(r,Q) =

(
A+ cD(1 + β − θβ) + h

Q

D

(
Q

2
+ s̄(r)− µ+ r − βr + θβr

)
+ ss̄(r)

)
D

Q

=
AD

Q
+ cD(1 + β − θβ) + h

(
Q

2
+ s̄(r)− µ+ r − βr + θβr

)
+
ss̄(r)D

Q

=
AD

Q
+ cD(1 + β − θβ) + h

(
Q

2
− µ+ r − βr + θβr

)
+

(
h+

sD

Q

)
s̄(r) (A4)

To minimise C(r,Q), we first obtain its partial derivatives with respect to r and Q as
follows:

∂C

∂Q
= −AD

Q2
+
h

2
− sDs̄(r)

Q2
= 0 (A5)

∂C

∂r
= h(1− β + θβ) +

(
h+

sD

Q

)
∂s̄(r)

∂r
= 0 (A6)

For a given r, Eq. (A5) yields the optimal Q value (in Eq. (A7)), and Eq. (A6) yields
the complementary cumulative distribution of X (in Eq. (A8)), evaluated at the optimal
r.

Q =

√
2D(A+ ss̄(r))

h
(A7)

1− F (θr) =
hQ(1− β + θβ)

θ(hQ+ sD)
(A8)

With Eq. (A8), the optimal value of r can be obtained using the below equation.

r =

F−1
(

1− hQ(1−β+θβ)
θ(hQ+sD)

)
θ

(A9)

Eqs (A7 & A9) minimises C(r,Q), thus being the optimal inventory policy in this
situation.

Situation 2: θ and β are both stochastic with standard uniform distributions.
With Uθ, Lθ, and g(θ), the expected number of shortages per cycle: s̄(r) is calculated

as follows:

s̄(r) =

∫ Uθ

Lθ

∫ ∞
θr

(X − θr)f(X)g(θ)dXdθ (A10)

Accordingly, at the end of each cycle, the expected on-hand inventory: ā(r) can be
computed using the equation below.

ā(r) =

∫ Uθ

Lθ

∫ θr

0

(θr −X)f(X)g(θ)dXdθ + (1− µβ)(1− µθ)r

=

∫ Uθ

Lθ

∫ ∞
0

(θr −X)f(X)g(θ)dXdθ +

∫ Uθ

Lθ

∫ ∞
θr

(X − θr)f(X)g(θ)dXdθ

+ (1− µβ)(1− µθ)r
= s̄(r)− µ+ r − µβr + µθµβr (A11)

With the expected on-hand inventory above, Ccycle can be obtained as follows:
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Ccycle = A+ cQ+ h
Q

D

(
Q

2
+ r − µ+ s̄(r)− µβr + µθµβr

)
+ ss̄(r)

+ c(1− θ)βQ (A12)

Based on the above average cost per cycle, the average annual cost: C(r,Q) can be
calculated using Eq. (A12) below.

C(r,Q) =
AD

Q
+ cD(1 + β − θβ) + h

(
Q

2
+ r − µ− µβr + µθµβr

)
+

(
h+

sD

Q

)
s̄(r) (A13)

Similarly, we first obtain the partial derivatives of C(r,Q) with respect to r and Q.

∂C

∂Q
= −AD

Q2
+
h

2
− sD

Q2
¯s(r) = 0 (A14)

∂C

∂r
= h(1− µβ + µθµβ) +

(
h+

sD

Q

)
∂s̄(r)

∂r
= 0 (A15)

For a given r, Eq. (A14) yields the optimal Q value (in Eq. (A16)), and Eq. (A15)
yields the complementary cumulative distribution of X (in Eq. (A17)), evaluated at the
optimal r.

Q =

√
2D(A+ ss̄(r))

h
(A16)

∫ Uθ

Lθ

θ(1− F (θr))g(θ)dθ = ϕ(r) =
hQ(1− µβ + µβµθ)

hQ+ sD
(A17)

Similarly, based on Eq. (A17), the optimal value of r can be obtained as follows.

r = ϕ−1
(
hQ(1− µβ + µβµθ)

hQ+ sD

)
(A18)

Eqs (A16 & A18) minimises C(r,Q), thus being the optimal inventory policy in this
situation.

Appendix B. (r,Q) models involving misplaced items for the case of
backorders

When the system is out of stock, the demands are backordered at the unit backordering
cost o.
Situation 1: θ and β are both deterministic.

In this situation, the number of backordered products at the end of each cycle is
max[0, X − rθ]. b̄(r) can be computed as follows:

b̄(r) =

∫ ∞
θr

(X − θr)f(X)dX (B1)

At the end of each cycle, ā(r) is calculated using Eq. (B2) below.
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ā(r) =

∫ θr

0

(θr −X)f(X)dX + (1− β)(1− θ)r

=

∫ ∞
0

(θr −X)f(X)dX +

∫ ∞
θr

(X − θr)f(X)dX

+ (1− β)(1− θ)r
= b̄(r)− µ+ r − βr + θβr (B2)

Subsequently, Ccycle and C(r,Q) can be obtained as follows:

Ccycle = A+ cQ+ h
Q

D

(
Q

2
+ r − µ− βr + θβr

)
+ ob̄(r) + c(1− θ)βQ (B3)

C(r,Q) =
AD

Q
+ cD(1 + β − θβ) + h

(
Q

2
+ r − µ− βr + θβr

)
+

(
oD

Q

)
b̄(r) (B4)

Similarly, to minimise C(r,Q), we obtain its partial derivatives with respect to r and
Q.

∂C

∂Q
= −AD

Q2
+
h

2
− oDb̄(r)

Q2
= 0 (B5)

∂C

∂r
= h(1− β + θβ) +

(
oD

Q

)
∂b̄(r)

∂r
= 0 (B6)

For a given r, Eq. (B5) yields the optimal Q value (in Eq. (B7)), and Eq. (B6) yields
the complementary cumulative distribution of X (in Eq. (B8)), evaluated at the optimal
r.

Q =

√
2D(A+ ob̄(r))

h
(B7)

1− F (θr) =
hQ(1− β + βθ)

θoD
(B8)

With Eq. (B.8), the optimal value of r can be obtained using the below equation.

r =

F−1
(

1−hQ(1−β+βθ)
θoD

)
θ

(B9)

Eqs (B.7 & B.9) minimise C(r,Q), thus being the optimal inventory policy in this
situation.
Situation 2: θ and β are both stochastic with standard uniform distributions.

With Uθ, Lθ, and g(θ), b̄(r) can be calculated in a similar way as in the lost-sales case.

b̄(r) =

∫ Uθ

Lθ

∫ ∞
θr

(X − θr)f(X)g(θ)dXdθ (B10)

Accordingly, at the end of each cycle, ā(r) is computed using the equation below.
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ā(r) =

∫ Uθ

Lθ

∫ θr

0

(θr −X)f(X)g(θ)dXdθ + (1− µβ)(1− µθ)r

=

∫ Uθ

Lθ

∫ ∞
0

(θr −X)f(X)g(θ)dXdθ +

∫ Uθ

Lθ

∫ ∞
θr

(X − θr)f(X)g(θ)dXdθ

+ (1− µβ)(1− µθ)r
= b̄(r)− µ+ r − µβr + µθµβr (B11)

Further, Ccycle and C(r,Q) are calculated as follows:

Ccycle = A+ cQ+ h
Q

D

(
Q

2
+ r − µ− µβr + µθµβr

)
+ ob̄(r) + c(1− θ)βQ (B12)

C(r,Q) =
AD

Q
+ cD(1 + β − θβ) + h

(
Q

2
+ r − µ− µβr + µθµβr

)
+

(
oD

Q

)
b̄(r) (B13)

Similarly, we first derive the partial derivatives of C(r,Q) with respect to r and Q.

∂C

∂Q
= −AD

Q2
+
h

2
− oDb̄(r)

Q2
= 0 (B14)

∂C

∂r
= h(1− µβ + µθµβ) +

oD

Q

∂b̄(r)

∂r
= 0 (B15)

For a given r, Eq. (B14) yields the optimal Q value (in Eq. (B16)), and Eq. (B15)
yields the complementary cumulative distribution of X (in Eq. (B17)), evaluated at the
optimal r.

Q =

√
2D(A+ ob̄(r))

h
(B16)

∫ Uθ

Lθ

θ(1− F (θr))g(θ)dθ = ϕ(r) =
hQ(1− µβ + µβµθ)

oD
(B17)

With Eq. (B17), the optimal value of r can be obtained using the below equation.

r = ϕ−1
(
hQ(1− µβ + µβµθ)

oD

)
(B18)

Eqs (B16 & B18) minimise C(r,Q), thus being the optimal inventory policy in this
situation.
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Appendix C. Derivation of Eq. (13)

ā(r) =

∫ Uθ

Lθ

∫ θr

0

(θr −X)f(X)g(θ)dXdθ + (1− µβ)(1− µθ)r

=

∫ Uθ

Lθ

∫ ∞
0

(θr −X)f(X)g(θ)dXdθ

+

∫ Uθ

Lθ

∫ ∞
θr

((1− α) + α)(X − θr)f(X)g(θ)dXdθ + (1− µβ)(1− µθ)r

=

∫ Uθ

Lθ

∫ ∞
0

(θr −X)f(X)g(θ)dXdθ

+

∫ Uθ

Lθ

∫ ∞
θr

(1− α)(X − θr)f(X)g(θ)dXdθ

+

∫ Uθ

Lθ

∫ ∞
θr

α(X − θr)f(X)g(θ)dXdθ + (1− µβ)(1− µθ)r

= b̄(r) + s̄(r)− µ+ r − µβr + µθµβr (C1)

Appendix D. Derivation of total inventory cost from the original model
in the mixed case

When unsatisfied demands are all lost, the number of shortages at the end of each cycle
is max[0, X − r]. When partial unsatisfied demands are lost at a percentage (1− α), the
number of shortages at the end of each cycle is max[0, (1− α)(X − r)]. With the interval
of shortages, the expected number of shortages per cycle s̄(r) is calculated as follows:

s̄(r) =

∫ ∞
r

(1− α)(X − r)f(X)dX (D1)

When all unsatisfied demands are backordered, the number of backordered products at
the end of each cycle is max[0, X − r]. When these demands are partially backordered
at a percentage α at a unit backordering cost o. The expected number of backordered
products per cycle b̄(r) can be computed as follows:

b̄(r) =

∫ ∞
r

α(X − r)f(X)dX (D2)

At the end of each cycle, the on-hand inventory is max[0, r − X]. With the interval
of the on-hand inventory, the expected on-hand inventory ā(r) can be obtained using Eq.
(D3).

ā(r) = s̄(r)− µ− r (D3)

With the expected number of backordered and shortage products and the expected on-
hand inventory per cycle above, the initial average cost per cycle iCcycle can be computed
as follows:

iCcycle = A+ cQ+ h
Q

D

(
Q

2
+ s̄(r) + r − µ

)
+ ob̄(r) + ss̄(r) (D4)

Based on the above average cost per cycle, the initial average annual cost iCcycle can
be calculated using Eq. (D5) below.
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iC(r,Q) =
AD

Q
+ cD + h

(
Q

2
+ s̄(r) + r − µ

)
+

(
oD

Q

)
b̄(r) +

(
sD

Q

)
s̄(r) (D5)

To minimise iC(r,Q), we first obtain its partial derivatives with respect to r and Q.

∂iC

∂Q
= −AD

Q2
+
h

2
− oDb̄(r)

Q2
− sDs̄(r)

Q2
= 0 (D6)

∂iC

∂r
= h

(
∂s̄(r)

∂r
+ 1

)
+
D

Q

(
s
∂s̄(r)

∂r
+ o

∂b̄(r)

∂r

)
= 0 (D7)

For a given r, Eq. (D6) yields the optimal Q value, as shown in Eq. (D8) below.

Q =

√
2D(A+ ob̄(r) + ss̄(r))

h
(D8)

For a given r, Eq. (D7) yields the complementary cumulative distribution ofX evaluated
at the optimal r, as shown in the equation below.

1− F (r) =
hQ

(hQ1− α) +Ds(1− α)− αoD)
(D9)

Based on Eq. (D9), the optimal value of r can be obtained as follows:

r = F−1
(

1− hQ

(hQ1− α) +Ds(1− α)− αoD)

)
(D10)

Eqs (D8 & D10) minimise the iC(r,Q), thus being the optimal inventory policy in the
mixed case when misplaced items are not considered.

At the end of the year, upon realising that they had misplaced items and some of them
were lost, a company has to pay an additional cost for the misplaced and lost items. With
the additional cost, the final average cost per cycle Ccycle and the final average annual
cost C(r,Q) are computed as follows:

Ccycle = A+ cQ+ h
Q

D

(
Q

2
+ s̄(r) + r − µ

)
+ ob̄(r) + ss̄(r) + cθµ+ cQθβ (D11)

C(r,Q) =

(
A+ cQ+ h

Q

D

(
Q

2
+ s̄(r)− µ+ r

)
+ ss̄(r) + ob̄(r)

+ cθµ+ cQθβ

)
D

Q
(D12)

Appendix E. Proof of convexity for total inventory cost

Situation 1: θ and β are both deterministic.

C(r,Q) =
AD

Q
+ cD(1 + β − θβ) + h

(
Q

2
+ s̄(r) + r − µ− βr + θβr

)
+

(
sD

Q

)
s̄(r) +

(
oD

Q

)
b̄(r) (E1)
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Taking the first and second partial derivatives of C(r,Q) with respect to r and Q:

∂C

∂Q
= −AD

Q2
+
h

2
− oDb̄(r)

Q2
− sDs̄(r)

Q2
= 0 (E2)

∂2C

∂Q2
=

2AD

Q3
+

2oDb̄(r)

Q3
+

2sDs̄(r)

Q3
> 0 (E3)

∂C

∂r
= h

(
∂s̄(r)

∂r
+ 1− β + θβ

)
+
D

Q

(
s
∂s̄(r)

∂r
+ o

∂b̄(r)

∂r

)
(E4)

∂2C

∂r2
= h

(
∂2s̄(r)

∂r2

)
+
D

Q

(
s
∂2s̄(r)

∂r2
+ o

∂2b̄(r)

∂r2

)
> 0 (E5)

and

∂2C

∂r∂Q
=

∂2C

∂Q∂r
= − D

Q2

(
s
∂s̄(r)

∂r
+ o

∂b̄(r)

∂r

)
. (E6)

With those equations, we obtain the determinant∣∣∣∣∣∣∣
∂2C
∂Q2

∂2C
∂Q∂r

∂2C
∂r∂Q

∂2C
∂r2

∣∣∣∣∣∣∣ = −
(
− D

Q2

(
s
∂s̄(r)

∂r
+ o

∂b̄(r)

∂r

))2

+

(
2AD

Q3
+

2oDb̄(r)

Q3
+

2sDs̄(r)

Q3

)(
h

(
∂2s̄(r)

∂r2

)
+
D

Q

(
s
∂2s̄(r)

∂r2
+ o

∂2b̄(r)

∂r2

))
(E7)

This term is non-negative when

2(A+ ob̄(r) + ss̄(r))

(
h

(
∂2s̄(r)

∂r2

)
+
D

Q

(
s
∂2s̄(r)

∂r2
+ o

∂2b̄(r)

∂r2

))
≥ D

Q

(
s
∂s̄(r)

∂r
+ o

∂b̄(r)

∂r

)2

(E8)

With s̄(r) ≥ 0, b̄(r) ≥ 0, and all positive parameters. Therefore, C(r,Q) is convex
function when above condition is satisfied.
Situation 2: θ and β are both stochastic with standard uniform distributions

C(r,Q) =
AD

Q
+ cD(1 + µβ − µθµβ) + h

(
Q

2
+ s̄(r) + r − µ− µβr + µθµβr

)
+

(
sD

Q

)
s̄(r) +

(
oD

Q

)
b̄(r) (E9)

Taking derivatives gives the same expressions, therefore C(r,Q) is convex function when
above condition is satisfied.
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