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FUZZY IDEALS IN MATRIX NEARRINGS

V. PARUCHURI1, S. BHAVANARI2, R. SALVANKAR3, H. PANACKAL3, S. P. KUNCHAM3∗, §

Abstract. We introduce fuzzy ideal of a matrix nearring corresponding to a fuzzy ideal
of a nearring. We prove properties relating to fuzzy ideals of a nearring and that of a
matrix nearring. Finally, prove an order preserving one-one correspondence between the
fuzzy ideals of R (over itself) and that of Mn(R)-group Rn.
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1. Introduction

A nearring is a set R together with two binary operations + and · such that: (1) (R,+)
is a group (not necessarily abelian), (2) a · (b · c) = (a · b) · c, (3) (a + b) · c = a · c + b · c
for all a, b, c ∈ R. In view of (iii), R satisfies the right distributive law, and so it is called
as a right nearring. It is evident that 0 · n = 0 for all n ∈ R. However, n · 0 need not be
equal to 0, in general. We denote R0 = {n ∈ R : n · 0 = 0}, the zero-symmetric part of
the right nearring. If R = R0, then we say that the nearring R is zero-symmetric.
Let (G,+) be a group. By an R-group, we mean a mapping R × G → G (the image of
(n, g) ∈ R × G is denoted by ng), satisfying the following conditions: (1) (n + n1)g =
ng + n1g, and (2) (nn1)g = n(n1g) for all g ∈ G and n, n1 ∈ R.
Throughout, we denote R for a right nearring and R-group by RG or (simply by G).
If R = G then we denote RR. A subgroup (H,+) of (G, +) with RH ⊆ H is said to
be an R-subgroup of G. A normal subgroup K of an R-group G is called an ideal if
n(x+ a)− nx ∈ K for all n ∈ R, x ∈ G and a ∈ K.
For preliminary definitions and results on Nearrings, R-groups and fuzzy aspects, we refer
to [15, 3], for matrix nearrings, we refer to [5, 1, 2]. In section 3, we introduce fuzzy
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ideal of a matrix nearring corresponding to a fuzzy ideal of a nearring and prove an order
preserving one-one correspondence between the fuzzy ideals of R (over itself) and those of
Mn(R)-group Rn. In section 4, we prove properties of Insertion of Factors Property (IFP,
in short) in matrix nearrings.

2. Preliminaries of matrix nearrings

Matrix nearrings over arbitrary nearrings were introduced in [14].

Definition 2.1. Consider R with mutiplicative identity 1. Rn denotes the direct sum of
n-copies of (R,+). For any r ∈ R, 1 ≤ i ≤ n and 1 ≤ j ≤ n, define f rij : Rn → Rn

as f rij(a1, a2, · · · , an) = (0, · · · , raj , · · · , 0) (here raj is in the ith place). If f r : R → R

defined by f r(x) = rx for all x ∈ R, ii : R → Rn is the canonical monomorphism; and
πj : Rn → R is the jth projection map, then it is clear that f rij = iif

rπj and f rij ∈M(Rn)

where M(Rn) is the nearring of all mappings from Rn → Rn. The sub-nearring Mn(R) of

M(Rn) generated by
{
f rij : r ∈ R, 1 ≤ i, j ≤ n

}
is called the matrix nearring over R, and

Rn becomes an Mn(R)−group. The length of an expression is the number of f rij in it. The

weight w(A) of a matrix A is the length of an expression of minimal length for A.

Lemma 2.1. (3.1(iii), (v), 2.3 of [14]):

(1) For any r, s ∈ R we have

f rijf
s
kl =

{
f rsil if j = k

f r0il if j 6= k

where i, j, k, l ∈ {1, 2, · · · , n}.
(2) f rij(f

1
1k1

+ · · ·+ f rnnkn) = f rij(fjkj )
rj = f

rrj
ikj

.

(3) Let A ∈Mn(R), x ∈ R, 1 ≤ i, j ≤ n. Then there exist a1, a2, · · · , an ∈ R such that

Afxij = fa11j + · · ·+ fannj .

Result 2.1. (Prop. 4.1 of [14]): If L is a left ideal of R then Ln is an ideal of the
Mn(R)-group Rn.

Notation: For an ideal I of Mn(R),
I∗ = {x ∈ R : x ∈ im(πjA) for some A ∈ I and 1 ≤ j ≤ n}.

Result 2.2. (Lemma 4.4 of [14]): If I is a two sided ideal of Mn(R), then a ∈ I∗ if and
only if fa11 ∈ I.

Result 2.3. (Corollary 4.5 of [14]): If I is a two sided ideal of Mn(R), then a ∈ I∗ if and
only if faij ∈ I for all 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Theorem 2.1. (Theorem 4.6 of [14]): If I is a two sided ideal of Mn(R), then I∗ is a two
sided ideal of R.

Definition 2.2. (1) An element A ∈ Mn(R) is said to be nilpotent if there exists a
positive integer k such that Ak = 0.

(2) Mn(R) is said to be reduced if Mn(R) has no non-zero nilpotent elements.

Definition 2.3. Following the notation from ([2], Notation 1.1), for any ideal I of Mn(R)-
group Rn, we write

I∗∗ = {a ∈ R : a = πjA, for some A ∈ I, 1 ≤ j ≤ n}.
It can be seen that I∗∗ = {a ∈ R : (a, 0, · · · , 0) ∈ I}.
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Lemma 2.2. 1.3, 1.4, 1.5 of [2]

(1) I∗∗ is an ideal of RR.
(2) If Ln is an ideal of Rn, then L = (Ln)∗∗.
(3) L is an ideal of RR, then L = (Ln)∗∗.
(4) L is an ideal of Rn, then (L∗∗)n = L.

Theorem 2.2. (Proposition 2.5 of [6]): Let S ⊆ R. Then λS is a fuzzy ideal of R if and
only if S is an ideal of R.

Definition 2.4. ([6]): Let µ be a fuzzy subset of R. Then µu = {x ∈ R : µ(x) ≥ u} , for
all u ∈ [0, 1], is called the level subset of u.

Theorem 2.3. ([6], [17]): Let µ be a fuzzy subset of R. Then µt, t ∈ [0, µ(0)] is an ideal
of R if and only if µ is a fuzzy ideal of R.

Definition 2.5. ([6]): A fuzzy ideal µ of R is called prime if for any two fuzzy ideals σ
and θ of R such that σ ◦ θ ⊆ µ implies that σ ⊆ µ or θ ⊆ µ.

Example 2.1. Let R = {p, q, r, s} be a set with two binary operations + and · is defined
as follows.

+ p q r s
p p q r s
q q p s r
r r s p q
s s r q p

Table 1

x · y =

{
p, if (x ∈ {p, q}) or (x ∈ {r, s}, y 6= s)

q, if x ∈ {r, s}, y = s

Then (R,+) is an (R,+, ·)-group. Define a fuzzy subset µ : R → [0, 1] by µ(r) = µ(s) <
µ(q) < µ(p). Then µ is a fuzzy ideal of R.

3. Fuzzy ideals of matrix nearrings

The concept of fuzzy subset was initiated in [21]. Later the authors [6, 17] studied
the concept fuzzy in different algebriac systems, particularly in the theory of rings and
nearrings. A mapping µ : X → [0, 1], where X be a non-empty set, is called the fuzzy
subset of X.

Definition 3.1. For any two fuzzy subsets σ and θ of R, we define the fuzzy subset σ ◦ θ
of R as follows:

(σ ◦ θ)(x) =

{
supx=yz {min(σ(y), θ(z))} , if x = yz;

0, otherwise.

Further, σ and θ of R, σ ⊆ θ, we mean σ(x) ≤ θ(x) for all x ∈ R.
Definition 3.2. Let µ and σ be fuzzy subsets of X and Y respectively, and f a function
of X into Y. The image of µ, under f, is a fuzzy subset of Y, defined by

(f(µ)) =

{
supf(a)=b µ(a), if f−1(b) 6= φ;

0, if f−1(b) = φ.
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and (f−1(σ))(x) = σ(f(x)) for all x ∈ X.

Definition 3.3. Let µ be a non-empty fuzzy subset of a nearring R (that is µ(u) 6= 0 for
some u ∈ R). Then µ is said to be a fuzzy ideal of R if it satisfies the following conditions:
(1) µ(u+ v) ≥ min {µ(u), µ(v)}, (2) µ(−u)
= µ(u), (3) µ(u) = µ(v + u − v), (4) µ(uv) ≥ µ(u), (5) µ {u(v + i)− uv} ≥ µ(i) for all
u, v, i ∈ R.

Note 3.1. If µ is a fuzzy ideal of R, then µ(u+ v)
= µ(v + u), and µ(0) ≥ µ(u), for all u, v ∈ R.

Definition 3.4. Let I be an ideal of R. We define the characteristic function on I as
λI : R→ [0, 1], where

λI(u) =

{
1 if u ∈ I,
0 otherwise.

We introduce fuzzy ideal of a matrix nearring corresponding to a fuzzy ideal of a near-
ring.

Definition 3.5. Let µ be fuzzy ideal of R. We define µ? : Rn → [0, 1] by µ?(u1, · · · , un)
= min{µ(u1), · · · , µ(un)}.

Note 3.2. µ?(0, · · · , uj , · · · , 0) ≥ µ?(u1, · · · , un), for any ui, 1 ≤ i ≤ n in R. Since µ
is a fuzzy ideal of R, µ(0) ≥ µ(x),∀x ∈ R. Therefore, min{µ(0), · · · , µ(uj), · · · , µ(0)} =
µ(uj) ≥ min{µ(u1), µ(u2), · · · , µ(un)}.

Lemma 3.1. If µ is a fuzzy subgroup of R, then µ? is a fuzzy subgroup of Mn(R)-group Rn.

Proof. Suppose µ is a fuzzy subgroup of R. Take ρ1, ρ2 ∈ Rn. Then ρ1 = (u1, · · · , un) and
ρ2 = (v1, · · · , vn) for some ui, vi ∈ R, 1 ≤ i ≤ n. Now

µ?(ρ1 + ρ2) = µ?((u1, · · · , un) + (v1, · · · , vn))

= µ?(u1 + v1, · · · , un + yn)

= min{µ(u1 + v1), · · · , µ(un + vn)}
≥ min{µ(u1), µ(v1), , , , µ(un), µ(vn)}
= min{µ(u1), · · · , µ(un), µ(v1), · · · , µ(vn)}
= min{min{(u1, · · · , un)},min{(v1, · · · , vn)}}
= min{µ?(ρ1), µ?(ρ2)}.

�

Lemma 3.2. If µ is a fuzzy ideal of R, then

µ?(f rij(u1, · · · , un)) ≥ µ?(u1, · · · , un),

for all r ∈ R and 1 ≤ i, j ≤ n.

Proof. We have µ?(f rij(µ1, µ2, · · · , µn))

= µ?(0, · · · , ruj , · · · , 0)
= min{µ(0), · · · , µ(ruj), · · · , µ(0)} (since µ(0) = 0)
= µ(ruj) (since µ(0) ≥ µ(x), for all x ∈ R) ≥ µ(ruj) (since µ is a fuzzy ideal of R)
= min{µ(0), · · · , µ(uj), · · · , µ(0)}
= µ?(0, · · · , uj , · · · , 0) ≥ µ?(u1, · · · , uj , · · · , un). �
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Lemma 3.3. µ is a fuzzy ideal of R, µ? : Rn → [0, 1] satisfies µ?(X + Y −X) = µ?(Y ),
for all X,Y ∈ Rn.

Proof. LetX = (u1, · · · , un) and Y = (v1, · · · , vn) be elements ofRn. Now µ?((u1, · · · , un)+
(v1, · · · , vn)− (u1, · · · , un)) = µ?((u1 + v1 − u1), · · · , (un + vn − un))
= min{µ(u1 + v1 − u1), · · · , µ(un + vn − un)}. Since µ is a fuzzy ideal of R, min{µ(u1 +
v1 − u1), · · · , µ(un + vn − un)} ≥ min{µ(v1), · · · , µ(vn)} = µ?(v1, · · · , vn). �

Lemma 3.4. If µ is a fuzzy ideal of R (over itself) then µ? is a left ideal of Mn(R)-group
Rn.

Proof. Let X = (u1, · · · , un) and Y = (v1, · · · , vn) be elements of Rn. We prove this
by induction on weight of a matrix. We prove for weight of A ∈ Mn(R) is 1. Then
A = f rij . Now µ?(f rij(X +Y )− f rij(X)) = µ?(f rij(u1 + v1, · · · , un + vn)− f rij(u1, · · · , un)) =

µ?(0, · · · , r(xj + yj)− rxj , · · · , 0) = µ?((0, · · · , r(uj + vj), · · · , 0)− (0, · · · , rxj , · · · , 0)) =
µ(r(uj + vj)− rxj) ≥ µ(vj) (since µ is a fuzzy ideal) = min{µ(0), · · · , µ(vj), · · · , µ(0)}
= µ?(0, · · · , vj , · · · , 0) ≥ µ?(v1, · · · , vn). By induction on weight of A ∈ Mn(R), we can
prove for the cases either A = B+C or A = BC, where w(B) ≤ w(A) and w(C) ≤ w(A),
so µ? is a left ideal of Mn(R)-group Rn. �

Now we summarize the following one-one correspondence theorem as follows.

Theorem 3.1. There is an order preserving one-one correspondence between FI(R),
the set of the fuzzy ideals of R-group R and FI(Mn(R)), the set of the fuzzy ideals of
Mn(R)-group Rn.

Proof. Define ψ : FI(R)→ FI(Mn(R)) by µ→ µ∗. To prove ψ is one-one:
Suppose µ1 6= µ2. Then there exists u1 ∈ R such that µ1(u1) 6= µ2(u1).

Take A = f
′
11 ∈Mn(R). µ∗1(A) = µ∗1(f

′
11(u1, · · · , un))

= µ∗1(u1, 0, 0 · · · , 0). By definition of µ∗1, we get µ∗1(u1, 0, 0 · · · , 0) = min{µ(u1), · · · , µ(0)}.
By the supposition min{µ(u1), · · · , µ(0)} = µ1(u1) 6= µ2(u1).
By definition of µ∗2, we have
µ2(u1) = min{µ2(u1), µ2(0), · · · } = µ∗2(u1, · · · , 0)

= µ∗2(f
′
11(u1, · · · , un)) = µ∗2(A). Therefore ψ is one-one.

Now we prove the order preserving property.
Suppose µ1 and µ2 be two fuzzy ideals of R such that µ1 ⊆ µ2. Now for any f rij ∈Mn(R),

ψ(µ2)(f
r
ij)

= (µ∗2f
r
ij)(u1, u2, · · · , un) = µ∗2(0, · · · , ruj , · · · , 0)

= min{µ2(0), · · · , µ2(ruj), · · · , µ2(0)} (by definition of µ∗2) = µ2(ruj) (since µ2 is a fuzzy
ideal of R) ≥ µ1(ruj) (by the supposition) = min{µ1(0), · · · , µ1(ruj), · · · , µ1(0)}
= µ∗1(0, · · · , ruj , · · · 0) (by definition of µ∗1) = ψ(µ1)(f

r
ij). Therefore ψ(µ1) ⊆ ψ(µ2). We

show that ψ is onto: Let δ be a fuzzy ideal of Rn. Define δ(x) = δ(fx11).

It can be verified that δ is a fuzzy ideal of R.
Clearly δ(y + x− y) = δ(x).

Now δ(nx) = δ(nx, 0, 0, · · · , 0) ≥ δ(fn11(x, 0, · · · , 0))

≥ δ(x, 0, · · · , 0)= δ(x), and δ(n(n
′
+ x)− nn′)

= δ(n(n
′
+ x)− nn′ , 0, 0, · · · , 0)

= δ((n(n
′
+ x), · · · , 0)− (nn

′
, · · · , 0))
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= δ(fn11((n
′
, 0, · · · , 0) + (x, · · · , 0))− fn11(n

′
, 0, · · · , 0))

≥ δ(x, 0, · · · , 0) = δ(x).
(δ)∗(u1, u2, · · · , un) = min{δ(u1), · · · , δ(un)}
= min{δ(u1, 0, · · · , 0), · · · , δ(un, · · · , 0)}
= min{δ(f ′11(u1, · · ·un)), · · · , δ(f ′1n(u1, · · · , un))}
≥ min{δ(u1, · · · , un), δ(u1, · · · , un), · · · , δ(u1, · · · , un)},
= δ(u1, · · · , un). Therefore (δ)∗ ⊇ δ. Also δ(u1, · · · , un) = δ((u1, 0, 0, · · · , 0) + · · · +
(0, · · · , un))
≥ min{δ(u1, 0, 0, · · · , 0), · · · , δ(0, · · · , un)}
= min{δ(f ′11(u1, · · · , un)), · · · , δ(f ′nn(u1, · · · , un))}
= min{δ(u1, 0, 0, · · · , 0), · · · , δ(un, 0, 0, · · · , 0)}
= (δ)∗(u1, · · · , un), and the proof is complete. �

4. More results on matrix nearrings

Definition 4.1. [5] Let I be a two sided ideal of R. Then I+ is the ideal generated by
{fskl : s ∈ I, 1 ≤ k, l ≤ n} in Mn(R).

Result 4.1. Let R be a zero symmetric right nearring. Then an ideal I satisfies Insertion
of Factors Property (abbr. IFP) if and only if I+ satisfies IFP.

Proof. Suppose I satisfies IFP. To show I+ satisfies IFP, let faij , f
b
kl ∈ Mn(R) such that

faijf
b
kl ∈ I+ where

a, b ∈ I, 1 ≤ i, j, k, l ≤ n. On a contrary, suppose there exists f cpq ∈ Mn(R) such that

faijf
c
pqf

b
kl /∈ I+.

Case (i) : Suppose j = p, q = k. Then faijf
c
pqf

b
kl /∈ I+. This implies faciq f

b
kl /∈ I+ (by

Lemma 2.1), and so facbil /∈ I+, a contradiction, since I satisfies IFP.

Case (ii) : Suppose j 6= p, q 6= b. Then faijf
c
pqf

b
kl /∈ I+.. This implies faciq f

b
kl /∈ I+, implies

facbil /∈ I+, and so facil /∈ I+, a contradiction. Therefore I+ satisfies IFP.
Conversely suppose that I+ satisfies IFP. On a contrary way, suppose that I does not
satisfy IFP. Then for all a, b ∈ R such that ab ∈ I and acb /∈ I for someC ∈ R. Now we
have fab14 ∈ I+, and so fa12f

b
24 ∈ I+.. Since I+ satisfies IFP, fa12Af

b
23 ∈ I+ ∀A ∈ Mn(R).

Take A = f c22, then fa12f
c
22f

b
23 = facb13 /∈ I+, a contradiction to I+ satisfies IFP. �

Result 4.2. {fa11 : a ∈ R} are central idempotent in Mn(R) if and only if {a ∈ R :
a is a central idempotent in R}.

Proof. Suppose fa11 is central. We show a is a central element. Now fax11 = fa11f
x
11 = fx11f

a
11

(since fa11 is central) = fxa11 . Therefore fax11 (1, 1, · · · , 1) = fxa11 (1, 1, · · · , 1)⇒ (ax, 0, 0, · · · ) =
(xa, 0, 0 · · · , 0) ⇒ ax = xa. Next we suppose that fa11 is an idempotent. Now

fa
2

11 = fa.a11 = fa11f
a
11 = fa11 (since fa11 is an idempotent). Therefore fa

2

11 (1, 0, · · · , 0) =
fa11(1, 0, · · · 0). This implies (a2, 0, · · · , 0) = (a, 0, · · · , 0). Therefore a2 = a, shows that a
is an idempotent. �

Corollary 4.1. a ∈ R is an idempotent in R if and only if faii is an idempotent in Mn(R),
for all ≤ i ≤ n.

Proof. (faii · faii)(x1, x2, · · · , xn)
= faii(0 · · · , 0, axi, 0, · · · 0)
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= (0 · · · , 0, aaxi, 0, · · · 0) = (0 · · · , 0, axi, 0, · · · 0) (since a2 = a) = faii(x1, x2, · · · , xn). Con-
versely, take i = 1 and the result follows from the Result 4.2. Let I be an ideal of R.
I∗ = (In : Rn) = {A ∈Mn(R) : Aρ ∈ In for all ρ ∈ Rn}. �

Theorem 4.1. Let I be an ideal of a zero symmetric nearring R. Then I is nilpotent in
R if I∗ is nilpotent in Mn(R).

Proof. Suppose (I∗)k = {0} for some k ∈ Z+. Take p1, p2, · · · , pk ∈ I. Then fp111 , · · · , f
pk
11 ∈

I∗. Now (fp111 , · · · , f
pk
11 )(1, 1, · · · , 1)

= fp111 , · · · , f
pk−1

11 (fpk11 (1, 1, · · · , 1))
= fp111 , · · · , f

pk−1

11 (pk, 0, · · · 0)
= fp111 , · · · , f

pk−2

11 (pk−1pk, 0, · · · 0) · · ·
= (p1p2p3 · · · pk−1pk, 0, · · · , 0) = (0, 0, · · · , 0) (by supposition).

This implies that p1p2p3 · · · pk−1pk = 0, and so Ik = 0 where k ∈ Z+. Hence, I is a
nilpotent ideal in R. �

5. Conclusions

This paper established an order preserving correspondence between the fuzzy ideals of
nearring module R (over itself) and that of Rn over matrix nearring Mn(R). The concept
further can be extended to study various prime ideal notions and related radicals in both
the structures.
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