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ON A FRACTIONAL WAVE EQUATION WITH SINGULAR INITIAL

DATA

A.BENMERROUS1∗, L.S.CHADLI1, A.MOUJAHID2, M.ELOMARI1, §

Abstract. This paper focuses on the time fractional wave equation with the use of
conformable derivative D(α) for 1 < α < 2 which we will prove to be inside Colombeau
algebra, the initial data are singular distibution. Nets of conformable cosine family (Cα

ϵ )ϵ
with polynomial development in ϵ as ϵ → 0 are defined for the first time and used for
solving this irregular fractional problems.
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1. Introduction

The wave equation is a fundamental equation in physics that describes the behavior
of waves. It is a partial differential equation that relates the second derivative of a wave
function with respect to time to the second derivative of the same function with respect
to space. This equation applies to a wide range of physical phenomena, including sound
waves, electromagnetic waves, and water waves. The solution to the wave equation can be
used to predict the behavior of waves in different situations, such as reflection, refraction,
and interference. It is a cornerstone of many fields of physics, including acoustics, optics,
and fluid dynamics, among others.

In traditional calculus, derivatives are defined for integer orders only, such as the first
derivative, second derivative, and so on. However, conformable calculus allows for deriva-
tives of any real or complex order, including non-integer orders.
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The basic idea behind conformable calculus is to redefine the traditional difference
operator by using the conformable fractional difference operator, which is a generalization
of the traditional difference operator. The conformable fractional difference operator uses
the concept of fractional calculus [12], which is a division of calculus that concerned with
derivatives and integrals of non-integer orders.

Conformable calculus has applications in various fields, including physics, engineering,
finance, and biology. It provides a new tool for modeling complex systems that cannot be
accurately described using traditional calculus [20][16].

In the first time A. Benmerrous and al [4] were able to studied the non-homogeneous
wave equation in Colombeau algebra, in their paper they deal with the following abstract
problem, taking the initial values as generalized functions:

d2

dt2
u(t, x)− c2

d2

dx2
u(t, x) = F (t, u(t, x)) x ∈ R, t > 0

u(0, x) = a(x)

∂tu(0, x) = b(x)

(1)

With a, b ∈ G. Then they studied the associations for this abstract problem.

In this paper we characterize a new method for solving the nonlinear fractional wave
equations with initial data are generalized functions as we can see in the following{

D(α)f(t, y) +Af(t, y) = F (t, f(t, y)) y ∈ R, t ≥ 0

f(0, y) = u0(y), ∂
(α)
t f(0, y) = v0(y)

(2)

Where A = −c2 d2

dx2 , D
(α) is the conformable derivation with 1 < α < 2, the linear operator

A : D(A) ⊂ G → G, F : [0, T ]× G → G, G is the Colombeau algebra.

The paper is organized as follows, in section 2 we mention some notions of Colombeau’s
algebra and some notion concerning the new derivative, in section 3 we will prove the
existence and uniqueness of conformable fractional derivative of order α in Colombeau
algebra, in section 4 we will deal with the basic definition of conformable cosine family
and some properties, in section 5, we provided the existence and uniqueness of generalized
solution.

2. Preliminaries

2.1. Colombeau algebra. Here we list some notations and formulas to be used later.
The elements of Colombeau algebras G are equivalence classes of regularizations, i.e.,
sequences of smooth functions satisfying asymptotic conditions in the regularization pa-
rameter ε. Therefore, for any set X, the family of sequences (uε)ε∈[0;1] of elements of a set

X will be denoted by X [0;1], such sequences will also be called nets and simply written as
uε.
Let D(Rn) be the space of all smooth functions φ : Rn −→ C with compact support.
For q ∈ N we denote:

Aq(Rn) =

{
φ ∈ D (Rn) /

∫
φ(x)dx = 1and

∫
xαφ(x)dx = 0 for 1 ≤ α ≤ q

}
.

The elements of the set Aq are called test functions.
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It is obvious that A1 ⊃ A2 . . . . Colombeau in his books has proved that the sets Ak

are non empty for all k ∈ N.

For φ ∈ Aq(Rn) and ϵ > 0 it is denoted as φϵ(x) = 1
εφ
(
x
ε

)
for φ ∈ D (Rn) and

φ̌(x) = φ(−x).

We denote by:

E (Rn) = {u : A1 × Rn → C/ with u(φ, x) is C∞ to the second variable x} ,

u (φε, x) = uε(x) ∀φ ∈ A1,

EM (Rn) =
{
(uε)ε>0 ⊂ E (Rn) /∀K ⊂ Rn, ∀a ∈ N,∃N ∈ N such that

sup
x∈K

∥Dαuε(x)∥ = O
(
ε−N

)
as ε→ 0} ,

N (Rn) =
{
(uε)ε>0 ∈ E (Rn) /∀K ⊂ Rn, ∀α ∈ N, ∀p ∈ N such that

sup
x∈K

∥Dαuε(x)∥ = O (εp) as ε→ 0} ,

The generalized functions of Colombeau are elements of the quotient algebra G (Rn) =
EM [Rn] /N [Rn] , where the elements of the set EM (Rn) are moderate while the elements
of the set N (Rn) are negligible.

The meaning of the term ‘association’ in G(R) is given with the next two definitions.

Definition 1. Generalized functions f, g ∈ G(R) are said to be associated, denoted f ≈ g,
if for each representative f(φε, x) and g(φε, x) and arbitrary ψ(x) ∈ D(R) there is a q ∈ N
such that for any φ(x) ∈ Aq(R), we have:

lim
ε→0+

∫
R
∥f(φε, x)− g(φε, x)∥ψ(x)dx = 0.

Definition 2. Generalized functions f ∈ G(R) is said to admit some as u ∈ D′
(R)

’associated distribution’, denoted f ≈ u, if for each representative f(φε, x) of f and any
ψ(x) ∈ D(R) there is a q ∈ N such that for any φ(x) ∈ Aq(R), we have:

lim
ε→0+

∫
R
f(φε, x)ψ(x)dx = ⟨u, ψ⟩.

2.2. Conformable derivative. The definition of conformable derivation is provided in
the following part.

Definition 3. [12] Let n < α ≤ n + 1 and u : R+ → R be n-differeniable, then the
conformable fracrional derivauive of u of order α characterized by

D(α)u(r) = lim
ϵ→0

u(n)
(
r + ϵrn+1−α

)
− u(n)(r)

ϵ

D(α)u(0) = lim
r→0

D(α)u(r)

Remark 1. [12] In light of the definition above, it is simple to demonstrate that

D(α)u(r) = rn+1−αu(n+1)(r)

with n < α ≤ n+ 1, and u is (n+ 1)-differeniable.
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Definition 4. [12] Let 1 < α ≤ 2,(
I(α)u

)
(r) =

∫ t

0
sα−2u(s)ds

.

Theorem 1. [12]

D(α)(I(α)u(r)) = u(r)

for r ≥ 0

3. Generalized conformable derivative

Let (fϵ(t))ϵ be a representative of the function f(t) ∈ G(R+) and let n− 1 < α < n.

The generalized conformable fractional derivative of (fϵ(t))ϵ, characterized by

D(α)fϵ(y) = y1−α d

dy
fϵ(y) (3)

n ∈ N, ϵ ∈ (0, 1)

Lemma 1. Let (fϵ(y))ϵ be a representative of f(t) ∈ G(R+). Then, ∀α > 0, supy∈[0,T ] |
D(α)fϵ(y) | has a moderate bound.

Proof.

sup
y∈[0,T ]

∥D(α)fϵ(y)∥ = sup
y∈[0,T ]

∥y1−α d

dy
fϵ(y)∥ ≤ T 1−α sup

y∈[0,T ]
∥ d
dy
fϵ(y)∥

≤ T 1−αCϵ−N

≤ Cα,T ϵ
−N

Then, ∃M ∈ N, such as

sup
y∈[0,T ]

∥D(α)fϵ(y)∥ = O
(
ϵ−M

)
, ϵ→ 0

□

Lemma 2. Let (f1ϵ(t))ϵ, (f2ϵ(t))ϵ be two distinct representatives of f(t) ∈ G(R+). Then,

∀α > 0, supy∈[0,T ] | D(α)f1ϵ(y)−D(α)f2ϵ(y) | is negligible.

Proof.

sup
y∈[0,T ]

∥D(α)f1,ϵ(y)−D(α)f2,ϵ(y)∥ = sup
y∈[0,T ]

∥y1−α d

dy
f1,ϵ(y)− y1−α d

dy
f2,ϵ(y)∥

= sup
y∈[0,T ]

∥y1−α

(
d

dy
f1,ϵ(y)−

d

dy
f2,ϵ(y)

)
∥

≤ T 1−α sup
y∈[0,T ]

∥ d
dy
f1,ϵ(y)−

d

dy
f2,ϵ(y)∥

Since (f1ϵ(y))ϵ and (f2ϵ(y))ϵ represent the same Colombeau generalized function f(y), so

supy∈[0,T ] | d
dyf1,ϵ(y)−

d
dyf2,ϵ(y) | is negligible, then for all p ∈ N

sup
y∈[0,T ]

∥D(α)f1ϵ(y)−D(α)f2ϵ(y) |= O
(
ϵ−p
)
, ϵ→ 0

Therefore, supy∈[0,T ] ∥D(α)f1ϵ(y)−D(α)f2ϵ(y)∥ is negligible. □
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We may now initiate the generalized conformable fractional derivative of a Colombeau
generalized function on R+ after establishing the first two lemmas.

Definition 5. Let f(y) ∈ G(R+) be a Colombeau function on R+.

The generalized conformable fractional derivative of f(y), using the notation D(α)f(t) =[(
D(α)fϵ(t)

)
ϵ

]
, α > 0, is a component of G(R+) satisfying (3).

Remark 2. For α ∈ (0, 1] the first-order derivative of D(α)fϵ(y) is

d

dy
D(α)fϵ(y) = (1− α)y−α d

dy
fϵ(y) + y1−α d2

dy2
fϵ(y)

and it fails to reach its limit.
Generally, the p-th order derivative dp

dy
pD(α)fϵ(y) it fails to reach its limit on R+.

Then if we wantsD(α) to be in G(R+), thus the fractional derivative must be regularized.

Definition 6. Let (fϵ)ϵ be a representative of a Colombesu generalized f ∈ G([0,∞)). The
regularized of new fractional derivative of (fϵ)ϵ∞, is characterized by :

D̄(α)fϵ(y) =

{ (
D(α)fϵ ∗ φϵ

)
(y), n− 1 < α < n

f
(n)
ϵ (y) = ( d

dy )
nfϵ(y), α = n,

(4)

n ∈ N, ϵ ∈ (0, 1).

where (3) gives D(alpha)fϵ(y) and the first section gives φϵ(y).

The convolution in (4) is
(
D(α)fϵ(y) ∗ φϵ

)
(y) =

∫∞
0 D(α)fϵ(y)φϵ(y − s)ds.

Lemma 3. Let (fϵ(y))ϵ be a representative of f(y) ∈ G(R+).

So, ∀α > 0, k ∈ {0, 1, . . .}, supy∈[0,T ] ∥
(
dk/dyk

)
D̃(α)fϵ(y)∥ has a moderate limit.

Proof. Let 0 < ϵ < 1.
For α ∈ N, D̃(α)fϵ(y) is the normal derivative of order α of fϵ(y) and the assertion follows
immediately .
In the event that n− 1 < α ≤ n, We’ve got

sup
y∈[0,T ]

∥D̄(α)fϵ(y)∥ = sup
y∈[0,T ]

∥
(
D(α) fϵ ∗ φϵ) (y)∥

≤ sup
y∈[0,T ]

∥
∫ ∞

0
D(α)fϵ(s)φϵ(y − s)ds∥

≤ sup
r∈K

∥D(α)fϵ(r)∥ sup
y∈[0,T ]

∥
∫
K
φϵ(y − s)ds∥

≤ C sup
y∈K

∥D(α)fϵ(y)∥

With C is a strictly positive constant.
Using the Lemma 1, supy∈[0,T ] | D(α)fϵ(y) | has a moderate bound, ∀α > 0, as a result of

this, supy∈[0,T ] | D̄(α)fϵ(y) | has a moderate bound, too.
□

Lemma 4. Let (f1ϵ(y))ϵ and (f2ϵ(y))ϵ be two different representatives of f(y) ∈ G(R+).

Then, ∀α > 0, k ∈ {0, 1, 2, . . .}, supt∈[0,T ] |
(
dk/dtk

) (
D̃(α)f1ϵ(t)− D̃(α)f2ϵ(t)

)
| is negligi-

ble.
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Proof.

sup
y∈[0,T ]

| d
k

dyk

(
D̄(α)f1ϵ(y)− D̄(α)f2ϵ(y)

)
∥ =

sup
y∈[0,T ]

∥ d
k

dyk

((
D(α)f1ϵ ∗ φϵ

)
(y)−

(
D(α)f2ϵ ∗ φϵ

)
(y)
)
|

= sup
y∈[0,T ]

∥ d
k

dyk

((
D(α)f1ϵ −D(α)f2ϵ

)
∗ φϵ

)
(y)∥

= sup
y∈[0,T ]

∥
((

D(α)f1ϵ −D(α)f2ϵ

)
∗ dk

dyk
φϵ

)
(y)∥

≤ sup
r∈K

∥
(
D(α)f1ϵ −D(α)f2ϵ

)
(r)∥ sup

y∈[0,T ]
∥
∫
K

dk

dyk
φϵ(y − r)dr∥

≤ C sup
r∈K

∥
(
D(α)f1ϵ −D(α)f2ϵ

)
(r)∥

Using the Lemma 2, we have supr∈K ∥
(
D(α)f1ϵ −D(α)f2ϵ

)
(r)∥ is negligible, so supy∈[0,T ] |

dk

dyk

(
D̄(α)f1ϵ(y)− D̄(α)f2ϵ(y)

)
| is negligible. □

The regularized generalized conformable fractional derivative D(alpha) is now introduced
in the following manner.

Definition 7. Let f(t) ∈ G(R+) be a Colombeau generalized function. The regularized

generalized conformable fractional derivative of f(t), writing D̄(α)f(t) =
[(
D̃(α)fϵ(t)

)
ϵ

]
,

α > 0, is a component of G(R+) satisfy (4).

4. Generalized conformable Cosine family

Let (X, ∥.∥) denote a Banach space, and C(X) denote the space of all linear continuous
mappings.
Before we define the generalized conformable cosine family, we will state that an applica-
tion from G −→ G must be linear.

Definition 8. Let X be a locally convex space with a semi-norm familly (qi)i∈I .

We define EM by the set of (yϵ)ϵ ⊂ X such that ∃n ∈ N and ∀i ∈ I ⊂ N, qi (yϵ) =
Oϵ→0 (ϵ

−n) .

And
N (X) by (yϵ)ϵ ⊂ X such that ∀m ∈ N and ∀i ∈ I ⊂ N, qi (yϵ) = Oϵ→0 (ϵ

n).

Then the Colombeau generalized function type by:

X = EM (X)/N (X)

Initially, using a provided family (Aϵ)ϵ∈[0,1] of maps Aϵ : X −→ X we want to see if we

can define a map A : X −→ X , Aϵ ∈ L(X).

The next lemma expresses the basic requirement:
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Lemma 5. Let (Aϵ)ϵ represent a family of maps Aϵ : X −→ X.

For each (xϵ)ϵ ∈ EM (X) and (yϵ)ϵ ∈ N (X), suppose that:
1) (Aϵxϵ)ε ∈ EM (X)
2) (Aϵ (xϵ + yϵ))ϵ − (Aϵxϵ)ϵ ∈ N (X)

So

A :

{
X −→ X
x = [xϵ] 7−→ Ax = [Aϵxϵ]

is clearly stated.

Proof. The first attribute reveals that the class [(Aϵxϵ)ϵ] ∈ X.
Let xϵ+yϵ should serve as another example of x = [xϵ], we have from the second property:

(Aϵ (xϵ + yϵ))ϵ − (Aϵxϵ)ϵ ∈ N (X)

and

[(Aϵ (xϵ + yϵ))ϵ] = [(Aϵxϵ))ϵ] in X

So A is well defined. □

We shall now introduce the idea of the generalized conformable cosine family(Convolution-
type cosine family).

Definition 9.

EM,α

(
R+, C(X)

)
:=

{
C

1
α
ϵ : R+ → C(X), ϵ ∈]0, 1[/∀T > 0,∃a ∈ R such that

sup
t∈[0,T ]

∥C
1
α
ϵ (t)∥ = O (εa) , ϵ→ 0}

(5)

Nα(R+, C(X)) :=

{
N

1
α
ϵ : R+ → C(X), ϵ ∈ ]0, 1[/∀T > 0, ∀b ∈ R such that

sup
t∈[0,T ]

∥N
1
α
ϵ (t)∥ = O

(
ϵb
)

, ϵ→ 0}
(6)

With the following characteristics:
1) ∃s > 0 and ∃a ∈ R such that

sup
t<s

∥∥∥∥∥∥
Nϵ

(
t
1
α

)
t

∥∥∥∥∥∥ = Oϵ→0 (ϵ
a) ,

2) ∃ (Hϵ)ϵ in C(X) and ϵ ∈]0, 1[ such that

lim
s→0

Nϵ

(
s

1
α

)
s

e = Hϵe, e ∈ X,

For every b > 0,

∥Hϵ∥ = Oϵ→0

(
ϵb
)
,

Proposition 1. Nα(R+, C(X)) is an ideal of EM,α(R+, C(X)) and EM,α(R+, C(X)) is an
algebra with respect to composition.
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Proof. Let (Cϵ)ϵ ∈ EM,α ([0,+∞[, C(X)) and (Nϵ)ϵ ∈ Nα ([0,+∞[, C(X)).
We shall simply establish the second statement, specifically,(

Cϵ

(
s

1
α

)
Nϵ

(
s

1
α

))
ϵ
,
(
Nϵ

(
s

1
α

)
Cϵ

(
s

1
α

))
ϵ
∈ Nα ([0,+∞[, C(X))

Where Cϵ

(
s

1
α

)
Nϵ

(
s

1
α

)
represents the composition.

By (1) and the definition of Nα from the previous definition, we have:∥∥∥Cϵ

(
s

1
α

)
Nϵ

(
s

1
α

)∥∥∥ ≤
∥∥∥Cϵ

(
s

1
α

)∥∥∥∥∥∥Nϵ

(
s

1
α

)∥∥∥ = Oϵ→0

(
ϵa+b

)
,

The same is also true for
∥∥∥Nϵ

(
s

1
α

)
Cϵ

(
s

1
α

)∥∥∥.
Furthermore, (1) and (2) provide

sup
r<s

∥∥∥∥∥∥
Cϵ

(
r

1
α

)
Nϵ

(
r

1
α

)
r

∥∥∥∥∥∥ ≤ sup
r<s

∥∥∥Cϵ

(
r

1
α

)∥∥∥ sup
r<s

∥∥∥Nϵ

(
r

1
α

)∥∥∥
= Oϵ→0 (ϵ

a) ,

In some situations s > 0. We have,

sup
r>s

∥∥∥∥∥∥
Nϵ

(
r

1
α

)
Cϵ

(
r

1
α

)
r

∥∥∥∥∥∥ = Oϵ→0 (ϵ
a) ,

For some s > 0 and a ∈ R. Let now ϵ ∈]0, 1[ be fixed. We have∥∥∥∥∥Cϵ(r
1
α )Nϵ(r

1
α )

r
x− Cϵ(0)Hϵx

∥∥∥∥∥ =

∥∥∥∥∥Cϵ(r
1
α )
Nϵ(r

1
α )

r
x− Cϵ(r

1
α )Hϵx+

Cϵ(r
1
α )Hϵx− Cϵ(0)Hϵx

∥∥∥
≤
∥∥∥Cϵ(r

1
α )
∥∥∥∥∥∥∥∥Nϵ(r

1
α )

r
x−Hϵx

∥∥∥∥∥+∥∥∥Cϵ(r
1
α )Hϵx− Cϵ(0)Hϵx

∥∥∥ .
According to (1) and (2), in addition to the continuity of r 7→ Cϵ(r

1
α )(Hϵx) at 0, the final

expression becomes zero as r → 0, we have:∥∥∥∥∥Nϵ(r
1
α )Cϵ(r

1
α )

r
x−HϵCϵ(0)x

∥∥∥∥∥ =

∥∥∥∥∥Nϵ(r
1
α )

r
Cϵ(r

1
α )x− Nϵ(r

1
α )

r
Cϵ(0)x+

Nϵ(r
1
α )

r
Cϵ(0)x−HϵCϵ(0)x

∥∥∥∥∥
≤

∥∥∥∥∥Nϵ(r
1
α )

r

∥∥∥∥∥∥∥∥Cϵ(r
1
α )x−Hϵ(r)Cϵ(0)x

∥∥∥+∥∥∥∥∥Nϵ(r
1
α )

r
(Cϵ(0)x)−Hϵ (Cϵ(0)x)

∥∥∥∥∥
Assertions (1) and (2) require that the final expression goes to zero since t 7→ 0. As a
result, the proposition is proven in both circumstances. □
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Definition 10. The Colombenu type algebra define by:

G(R+, C(X)) = EM,α(R+, C(X))/Nα(R+, C(X))

Now we will define the concept of generelized conformable cosine family.

Definition 11. Cα = [(Cα
ϵ )] with Cϵ ∈ EM,α(R+, C(X)) say the generalized conformable

cosine family if:

1. Cα(0) = Id

2. Cα
(
(r + 1)

1
α

)
+ Cα

(
(r − 1)

1
α

)
= 2Cα

(
r

1
α

)
Cα
(
r

1
α

)
3. The mapping r → Cα(r)x is a continuous mapping for each x ∈ X̄.

If Cα(r), r ∈ R is a strongly continuous conformable cosine family in X̄, then: Sα(r), r ∈
R is the one parameter family of operators in X̄ defined by

Sα(r) =

∫ r

0
Cα(τ)dτ.

Exemple 1. Let A be a bounded linear operasor on X. Define Cα(r) = e2rα+e−2rα

2 . Then

T (r)r ≥ 0 is a 1
2 semigroup. Indeed:

1. Cα(0) = 1.
3. The conrinuiry is clear.

Proposition 2. The family {Cα(r), r ∈ R} is a srongly conformable cosine family if only

if
{
C(r) = Cα(r)

(
r

1
α

)
, t ∈ R

}
is a srongly conrinuous conformable cosine family.

Proof. 1. It is clear that C(0) = I.
2. For all s, t ∈ R, we have

C(s+ s) + C(s− s) = Cα(t+ s)
(
s

1
α

)
+ Cα(t− s)

(
s

1
α

)
= 2Cα(t)

(
s

1
α

)
Cα(s)

(
s

1
α

)
= 2C(s)C(s)

3.Further the continuity of r → Cα
ϵ

(
r

1
α

)
y and the continuity of r → rα implies that

r → C(r)y is continuous.

It is sufficient to mention that for the necessary requirement Cα = Cα(r), if {Cα(r), r ∈ R}
is a strongly continuous conformable cosine family in X̄, then {Sα(r), r ∈ R} is the one
parameter family of operators in X̄ defined by

Sα(r)y = (ICα) (r)y, ∀r ∈ R, y ∈ X.

□

Remark 3. As the previous proposision {Sα(r), r ∈ R} is a conformable sine family iff{
S(r) = Sα

(
r

1
α

)
, r ∈ R

}
is conformable sine family.

Proposition 3. Let {Cα(r), r ∈ R} be a strongly continuous conformable cosine family
in X̄. The following statements are correct:
1. Cα(r) = Cα(−r) ∀r ∈ R
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2. Cα(r), Sα(r), Cα(s), and Sα(s) commute for all r, s ∈ R
3. Sα(r)y is continuous in r on R for each fixed y ∈ X
4. Sα(r + s) + Sα(r − s) = 2Sα(r)Cα(s) for all r, s ∈ R
5. Sα(r + s) = Sα(r)Cα(s) + Sα(s)Cα(r) for all r, s ∈ R
6.Sα(t) = −Sα(−t) for all t ∈ R
7. There exist constant M > 1 and ω ≥ 0 such that Cα(r) ≤Meω

α
for all r ∈ R and

∥Sα (r1)− Sα (r2)∥ ≤ M

ω

(
eω

α
1 − eω

α
2
)

Proof. The proposition 1-6 are consequence of the proposition 3.
For 7 , we have

∥Sα (r1)− Sα (r2)∥ =

∫ t1

t2

Cα(s)

s1−α
ds

≤M

∫ l1

t2

eωs
α

s1−α
ds =

M

ω

[
eωs

α]t1
t2

□

Definition 12. The conformable infinitesimal generator of a strongly continuous con-
formable cosine families Cα(r), r ∈ R is the operator A : X → X defined by

Ax = lim
r→0

D(α)Cα(r)

D(A) =
{
y, r → D(α)Cα(r)y, is continuous in r

}
Lemma 6.

C(r) = lim
α→2+

Cα(r) is a cosine family

Proof. It suffice to note that Cα
(
r

1
α

)
is a cosine families, r → r

1
α is continuous. □

Proposition 4. Let Cα(r), r ∈ R, be a srongly continuous conformable cosine family in
X̄ with conformable infinitesimal generator A. Then,
1. D(A) is dense in X and A is a closed operasor in X̄.

2. if x ∈ X̄ and r, s ∈ R, then z =
∫ 5
r

Sa(u)
u1−α xdu ∈ D(A) and Az = Cα(s)x− Cα(r)x

3. if x ∈ X̄, then Sα(t)x ∈ X̄

4. if x ∈ X̄, shen Sα(t)x ∈ D(A) and
(
D(α)Cα

)
(t)x = ASα(t)x

5 if x ∈ D(A), then Cα(t)x ∈ D(A) and D(α)Cα(t)x = ACα(t)x = Cα(t)Ax
6. if x ∈ D(A), then limx→0AS

α(x)x = 0

7 if x ∈ D(A), then Sα(t)x ∈ D(A) and D(α)Sα(t)x = ASα(t)x
8. if x ∈ D(A), then Sα(t)x ∈ D(A) and ASα(t)x = Sα(t)Ax
9. Cα(r + s)− Cα(s− s) = 2ASα(t)Sα(s) for all s, t ∈ R.

Proof. For 1 it just to use the previous definition 17 and proposition 3.

For 2− 9 By change s by s
1
α and t by t

1
α and use proposition 2.2 in [23]. □

5. Generalized solution of the fractional wave equation

we consider the following problem :{
D(α)f(t, y) +Af(t, y) = F (t, f(t, y)) y ∈ R, t ≥ 0

f(0, y) = u0(y), D(α)f(0, y) = v0(y)
(7)
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with A = −c2 d2

dx2 , u0(y), v0(y) ∈ G (Rn) .

Now we will transform the problem (7) in the Colombeau algebra using the first section.{
D(α)fϵ(t, y) +Aϵfϵ(t, y) = Fϵ(t, fϵ(t, y)) y ∈ R, t ≥ 0

fϵ(0, y) = u0,ϵ(x), D(α)fϵ(0, y) = v0,ϵ(y)
(8)

With A = −c2 d2

dx2 and 1 < α < 2, u0,ϵ(y), v0,ϵ(y) are regularized of a0(x) and b0(x) re-
spectively and by definition 18 A = [(Aε)] is the infinitesimal generator of generalized
conformable cosine family C = [(Cα

ϵ )ϵ].

The folowing definition is the definition of mild solution.

Definition 13. A funcrion fϵ : [0,∞) → X is a mild soluion of (8) if
1. fϵ is continuous differential on [0,∞).
2. fϵ is continuously α-differeniable on (0,∞).
3. fϵ(r) ∈ D(A) for r > 0.

4. fϵ(s) = Cα
ϵ (s)u0,ϵ + Sα

ϵ (s)v1,ϵ +
∫ t
0

sα(t−s)F (s,fϵ(s))
s2−α ds.

Definition 14. An element F ∈ G [Rn] is L∞ logarithmic type if it has a representative
(Fϵ)ϵ ∈ EM [Rn] such that

∥Fϵ∥L∞(Rn) = O(log(ϵ)) as ϵ→ 0

Theorem 2. Let ∇Fϵ is L∞ log-type and the conformable generalized sine family Sϵ =
[(Sα

ϵ )ϵ] is the associated of the conformable generalized cosine family C = [(Cα
ϵ )ϵ] verify

the properties of the previous section. Then the problem (8) has a unique solution in
G (R+ × Rn).

Proof. Existence.

The integral solution of the problem 8 is:

fϵ(t, y) = Cα
ϵ (t)u0,ϵ(y) + Sα

ϵ (t)v0,ϵ(y) +

∫ t

0
sα−2Sα

ϵ (t− s)Fϵ(s, fϵ(s))ds

Which implies that:

∥fϵ(t, .)∥L∞(Rn) ≤ ∥Cα
ϵ (t)∥ ∥u0,ϵ(.)∥L∞(Rn) + ∥Sα

ϵ (t)∥ ∥v0,ϵ(x)∥L∞(Rn)

+

∫ t

0
sα−2∥Sα

ϵ (t)∥ ∥Fϵ (s, fϵ(s, .))∥L∞(Rn) ds,

Then:

∥fϵ(t, .)∥L∞(Rn) ≤ sup
τ∈[0,T ]

∥Cα
ϵ (τ)∥ ∥u0,ϵ(.)∥L∞(Rn) + sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ ∥v0,ϵ(.)∥L∞(Rn)

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥

∫ t

0
sα−2 ∥Fϵ (s, fϵ(s, .))∥L∞(Rn) ds.

The first approximation of Fϵ is

Fϵ (s, fϵ(s, .)) = Fϵ(s, 0) +∇Fϵfϵ(s, .) +Nϵ(s)
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with Nϵ ∈ N (R+)
Then

∥fϵ(t, .)∥L∞(Rn) ≤ sup
τ∈[0,T ]

∥Cα
ϵ (τ)∥ ∥u0,ϵ∥L∞(Rn) + sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ ∥v0,ϵ∥L∞(Rn)

+ sup
τ∈[0,T ]

∥Sα
ϵ ∥
∫ t

0
sα−2∥Fϵ(s, 0)∥ds

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥∥∇Fϵ∥

∫ t

0
sα−2∥fϵ(s, .)∥L∞(Rn)ds

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥

∫ t

0
sα−2Nϵ(s)ds

We get
∥fϵ(t, .)∥L∞(Rn) ≤ sup

τ∈[0,T ]
∥Cα

ϵ (τ)∥ ∥u0,ϵ∥L∞(Rn)

+ sup
τ∈[0,T ]

∥Sα
ϵ ∥∥v0,ϵ∥L∞(Rn) +

Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ sup
τ∈[0,T ]

∥Fϵ(τ, 0)∥

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥∥∇Fϵ∥

∫ t

0
sα−2∥fϵ(s, .)∥L∞(Rn)ds

+
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ sup
τ∈[0,T ]

∥Nϵ(τ)∥

So,
∥fϵ(t, .)∥L∞(Rn) ≤ sup

τ∈[0,T ]
∥Cϵ(τ)∥ ∥u0,ϵ∥L∞(Rn)

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥ ∥v0,ϵ∥L∞(Rn)

+
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ sup
τ∈[0,T ]

∥Fϵ(τ, 0)∥

+
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ sup
τ∈[0,T ]

∥Nϵ(τ)∥

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥ ∥∇Fϵ∥

∫ t

0
sα−2∥fϵ(s, .)∥L∞(Rn)ds.

By the Granwall’s inequality:

∥fϵ(t, .)∥L∞(Rn) ≤

(
sup

τ∈[0,T ]
∥Cα

ϵ (τ)∥ ∥u0,ϵ∥L∞(Rn)

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥ ∥v0,ϵ∥L∞(Rn)

+
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ sup
τ∈[0,T ]

∥Fϵ(τ, 0)∥

+
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ sup
τ∈[0,T ]

∥Nϵ∥

)

× exp

(
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥∥∇Fϵ∥

)
.
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Since Cα
ϵ ∈ G (R+, C(X)), Sα

ϵ ∈ G ([0,+∞[, C(X)), u0,ϵ ∈ G (Rn) , v0,ϵ ∈ G (Rn) (Nϵ)ϵ ∈
N (R+) and ∇Fϵ is L

∞− logtype there exist M ∈ N such that
supt∈[0,T ] ∥fϵ(t, .)∥L∞(Rn) = O

(
ϵ−M

)
, ϵ→ 0

Then

fϵ ∈ G([0,+∞),Rn).

Uniqueness.

Let’s say there are two solutions f1,ϵ(t, .), f2,ϵ(t, .) to problem (8), consequently :
D(α)f1,ϵ(t, y)−Aϵf1,ϵ(t, y)−D(α)f2,ϵ (t, y) +Aϵf2,ϵ(t, y)

= Fϵ (t, f1,ϵ(t, y))− Fϵ (t, f2,ϵ(t, y))
y ∈ Rn, t ≥ 0

f1,ϵ(0, y)− f2,ϵ(0, y) = N0,ϵ(y)

D(α)f1,ϵ(0, y)−D(α)f2,ϵ(0, y) = N̄0,ϵ(y)

(9)

Then:

D(α) (f1,ϵ(t, y)− f2,ϵ(t, y))−Aϵ (f1,ϵ(t, y) + f2,ϵ(t, y)) = Fϵ (t, f1,ϵ(t, y))

− Fϵ (t, f2,ϵ(t, y))

y ∈ Rn, t ≥ 0

f1,ϵ(0, y)− f2,ϵ(0, y) = N0,ϵ(y)

D(α)f1,ϵ(0, y)−D(α)f2,ϵ(0, y) = N̄0,ϵ(y)

(10)

With (N0,ϵ)ϵ ,
(
N̄0,ϵ

)
ϵ
∈ N (R+).

The integral solution of the equation (10) is:

f1,ϵ(t, y)− f2,ϵ(t, y) = Cα
ϵ (t)N0,ϵ(y) + Sα

ϵ (t)N̄0,ϵ(y)

+

∫ t

0
sα−2Sα

ϵ (t) (Fϵ (s, f1,ϵ(s, x))− Fϵ (s, f2,ϵ(s, x))) ds

Then:
∥f1,ϵ(t, .)− f2,ϵ(t, .)∥L∞(Rn) ≤ ∥Cα

ϵ (t)∥ ∥N0,ϵ(.)∥L∞(Rn)

+ ∥Sα
ϵ (t)∥

∥∥∥Ñ0,ϵ(·)
∥∥∥
L∞(Rn)

+

∫ t

0
sα−2 ∥Sα

ϵ (t)∥ ∥Fϵ (s, f1,ϵ(s, .))− Fϵ (s, f2,ϵ(s, .))∥L∞(Rn) ds.

Which implies that:

∥f1,ϵ(t, .)− f2,ϵ(t, .)∥L∞(Rn) ≤ sup
τ∈[0,T ]

∥Cα
ϵ (τ)∥ ∥N0,ϵ(.)∥L∞(Rn)

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥

∥∥∥Ñ0,ϵ(.)
∥∥∥
L∞(Rn)

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥∫ t

0
sα−2 ∥Fϵ (s, f1,ϵ(s, .))− Fϵ (s, f2,ϵ(s, .))∥L∞ ds.

The initial estimate of Fϵ (s, f1,ϵ(s, .))− Fϵ (s, f2,ϵ(s, .)) is provided by

Fϵ (s, f1,ϵ(s, .))− Fϵ (s, f2,ϵ(s, .)) = ∥∇Fϵ∥ (f1,ϵ(s, .) −f2,ϵ(s, .)) +Nϵ(s),
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With (Nϵ)ϵ ∈ N (R+) .
So

∥f1,ϵ(t, .)− f2,ϵ(t, .)∥L∞(Rn) ≤ sup
τ∈[0,T ]

∥Cα
ϵ (τ)∥ ∥N0,ϵ(.)∥L∞(Rn)

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥

∥∥∥Ñ0,ϵ(.)
∥∥∥
L∞(Rn)

+
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥∫ t

0
sα−1∥∇Fϵ∥∥f1,ϵ(s, .)− f2,ϵ(s, .)∥L∞(Rn)ds

+
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ ∥Nϵ(s)∥

So,

∥f1,ϵ(t, .)−f2,ϵ(t, .)∥L∞(Rn) ≤ sup
τ∈[0,T ]

∥Cα
ϵ (τ)∥ ∥N0,ϵ(.)∥L∞(Rn)

+ sup
τ∈[0,T ]

∥Sα
ϵ (τ)∥

∥∥∥Ñ0,ϵ(.)
∥∥∥
L∞(Rn)

+
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ sup
τ∈[0,T ]

∥Nϵ(s)∥

+ sup
τ∈[0,T ]

∥Cα
ϵ (τ)∥∫ t

0
sα−2∥∇Fϵ∥

∥∥f1,ϵ(s, .)− f2,ϵ(s, .)∥L∞(Rn)ds

Using the Granwall’s inequality:

∥f1,ϵ(t, .)− f2,ϵ(t, .)∥L∞(Rn) ≤ ( sup
τ∈[0,T ]

∥Cα
ϵ (τ)∥∥N0,ϵ(.)∥L∞ + sup

τ∈[0,T ]
∥Sα

ϵ ∥∥Ñ0,ε(.)∥L∞

+
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥ sup
τ∈[0,T ]

∥Nϵ(s)∥)

× exp

(
Tα−1

α− 1
sup

τ∈[0,T ]
∥Sα

ϵ (τ)∥∥∇Fϵ∥

)
.

Since:
Cα
ϵ ∈ G(R+,L(X)), Sα

ϵ ∈ G(R+,L(X)), (N0,ϵ)ϵ, (Ñ0,ϵ)ϵ ∈ N (R+)(Nϵ)ϵ
∈ N (R+) and ∇F is L∞ - logtype and for every q ∈ N such that:

sup
t∈[0,T ]

∥f1,ϵ(t, .)− f2,ϵ(t, .)∥L∞ = O (ϵq) ϵ→ 0

□
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[17] Schwartz L., (1966), Théorie des distributions. Hermann, Paris.
[18] Segal I., (1963), Non-linear semi-groups, Ann. Math., (78), 339-364.
[19] Sher M., Khan A., Shah K., Abdeljawad T., (2023), Existence and stability theory of pantograph

conformable fractional differential problem, Thermal Science, 27(Spec. issue 1), 237-244.
[20] Shah K., Abdeljawad T., Jarad F., Al-Mdallal, Q., (2023), On nonlinear conformable fractional order

dynamical system via differential transform method, CMES-Computer Modeling in Engineering and
Sciences, 136(2), 1457-1472.

[21] Sova M., (1966), cosine operator functions, Warszawa, 47.
[22] Stojanovic M., (2012), Foundation of the fractional calculus in generalized function algebra, Analysis

and Applications, 10, 439-467.
[23] Travis C. C., Webb G. F., (1978), Cosine families and abstract nonlinear second order differential

equations, Acta Mathematica Hungarica, 1588-2632.

Abdelmjid Benmerrous is a PhD student at Sultan Moulay Slimane University,
Morocco. His research interests are: PDE, nonlinear analysis, theory of colombeau,
PDE with a strong singular coefficient, fractional derivatives, numerical methods.



78 TWMS J. APP. ENG. MATH. V.15, N.1, 2025

Lalla Saadia Chadli is currently working as a PES professor at the University of
Sultan Moulay Slimane, Morocco. Her research interests are PDE, nonlinear analysis,
theory of colombeau, PDE with a strong singular coefficient, theory methods and ap-
plications, fuzzy set, intuitionistic set, fractional derivatives, and numerical methods.

Abdelaziz Moujahid is currently working as a PES professor at the University of
Sultan Moulay Slimane, Morocco. His research interests are PDE, nonlinear analy-
sis, theory of colombeau, PDE with a strong singular coefficient, theory methods and
applications, fuzzy set, intuitionistic set, fractional derivatives, and numerical methods.

M’hamed Elomari is currently working as a PES professor at the University of Sultan
Moulay Slimane, Morocco. His research interests are PDE nonlinear analysis, theory of
colombeau, PDE with a strong singular coefficient, theory methods and applications,
fuzzy set, intuitionistic set, fractional derivatives, and numerical methods.


