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EDGE INCIDENT 2-EDGE COLORING SUM OF GRAPHS

A. JOSEPH1∗, C. DOMINIC1,2, §

Abstract. The edge incident 2-edge coloring number, ψ′
ein2(G), of a graph G is the

highest coloring number used in an edge coloring of a graph G such that the edges inci-
dent to an edge e = uv in G is colored with at most two distinct colors. The edge incident
2-edge coloring sum of a graph G, denoted as

∑
ein2′

(G), is the greatest sum among all the

edge incident 2-edge coloring of graph G which receives maximum ψ′
ein2(G) colors. The

main objective of this paper is to study the edge incident 2-edge coloring sum of graphs
and find the exact values of this parameter for some known graphs.

Keywords: Edge incident 2-edge coloring, edge incident 2-edge coloring number, edge
incident 2-edge coloring sum.
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1. Introduction

An edge coloring is an assignment of colors to the edges of a graph G such that no two
adjacent edges of G receive the same color. The minimum number of colors required in
a proper edge coloring of a graph G is called the chromatic index of G and is denoted
by χ′(G). Ewa Kubicka and Allen J Schwenk in [12] introduced the notion of chromatic
sum of a graph G, denoted as

∑
(G), and is defined as the smallest possible sum of colors

among all possible proper vertex coloring of a graph G with natural numbers. A few
research articles on this topic can be seen in [5, 8]. There is another graph invariant called
the minimum edge-chromatic sum (MECS) as defined in [7]. An edge coloring of a graph
G = (V,E) is a mapping ϕ : E −→ N such that no two adjacent edges of G receive the
same color. MECS is the smallest possible sum of colors among all possible proper edge
coloring of a graph G with natural numbers of G.

Recently, a lot of studies have been made towards the maximization of the coloring
numbers under certain constraints. The study on the 3-consecutive vertex coloring number
was a concept introduced by E. Sampathkumar in [14] to find the maximum number of
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colors in a vertex coloring of a graph G. Later, the edge analog to the 3-consecutive vertex
coloring of a graph was studied in [2]. These coloring concepts have their applications in
the network sciences and strong signed graph structures [15]. The 3-sequent achromatic
number of a graph G as mentioned in [4], ψ3s(G), is the maximum number of colors that
can be used in a vertex coloring of G such that if xy and yz are any two sequent edges
in G, then either the vertex x or the vertex z is assigned with the same color as given to
vertex y. C. Dominic and J.V. Devassia defined the concept of 3-sequent achromatic sum
of graphs,

∑
3s
(G), as the greatest sum of colors among all proper 3s-coloring that requires

3−sequent achromatic number of a graph G. Later, A. Joseph and C. Dominic in [11],
introduced the vertex induced 2−edge coloring sum and vertex incident 2−edge coloring
sum of graphs. The findings in this paper have been inspired by the concepts studied in
[4, 11, 10]. We are mainly interested in the study of the maximum sum of colors among
all the edge incident 2-edge coloring of a graph G having the highest number of colors.

Let V (G) be the finite vertex set, and E(G) be the finite edge set of a simple connected
graph G = (V,E). Two vertices u, v ∈ V (G) are said to be adjacent if there is an edge
between them. This implies that the two vertices u and v in a graph G are incident with
an edge e = uv. Two edges are said to be adjacent or incident if there is a common vertex
between them.

An edge coloring ψ : E −→ N of a graph G is said to be an edge incident 2-edge coloring
(or ein2−edge coloring) if for every adjacent vertex u and v in V (G), all the edges incident
to the vertices u and v cannot receive more than two distinct colors. The edge incident
2-edge coloring number of a graph G denoted as ψ′

ein2(G), is the maximum number of
colors permitted in such a coloring. The edge incident 2-edge coloring sum (or ein2−edge
coloring sum) of G,

∑
ein2′

(G), is the maximum sum attained among all the edge incident

2-edge coloring of G which receives the maximum ψ′
ein2 colors.

Consider the edge incident 2-edge coloring of a graph G as shown in figure 1. At most,
three colors, namely 1 (blue), 2 (red), and 3 (black), are required to color the edges of the
graph C6. In figure 1.(a), ψ′

ein2(C6) = 3 and sum = 12. In figure 1.(b), ψ′
ein2(C6) = 3 and

sum = 15. Therefore,
∑
ein2′

(C6) = 15.

(a) ψ′
ein2(C6) = 3; sum =

12
(b) ψ′

ein2(C6) = 3; sum =
15

Figure 1. ein2−edge coloring sum of graph C6

Color 1 Color 2 Color 3

We use the following definitions and notations for the further development of this paper.

• A (n,m)−graph is a graph G with order n and size m.
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• The distance between two vertices in a graph is the number of edges in the shortest
or minimal path. It gives the available minimum distance between two edges.
There can exist more than one shortest path between two vertices.

• The diameter of a graph G denoted as diam(G) or simply d(G), is the maximum
distance between the pair of vertices in G.

Throughout this paper, we deal with simple and connected graphs G of order n and
size m unless otherwise mentioned. For more definitions of graph theory, refer to [9].

Theorem 1.1. Let G be a simple connected graph with order n and size m. If d(G) ≥ 3,

then
∑
ein2′

(G) < m(m+1)
2 , where d(G) denotes the diameter of the graph G.

Proof. Let d(G) be the diameter of a simple connected graph G with order n and size m.
If d(G) ≥ 3, then clearly the size m of G is strictly greater than 2. From theorem 2.3 in
[10] it can be observed that if d(G) ≥ 3 then ψ′

ein2(G) < m. This implies m distinct edges

in G cannot be given m distinct colors. Thus,
∑
ein2′

(G) < m(m+1)
2 . □

This upper bound is sharp and is not attained for any G with size m ≥ 3.

Theorem 1.2. For a connected graph G of order n ≥ 2 and size 1 ≤ m < 3,
∑
ein2′

(G) =

m(m+1)
2 if and only if G is either K2 or P3.

The proof of the above theorem is evident and is omitted for the reader.

Definition 1.1. An independent edge set M of a graph G is a subset of the edges set
E(G) such that no two edges in the subset M share a common vertex of G. A maximum
independent edge set is an independent edge set containing the largest possible number
of edges among all independent edge sets for a given graph. The size of a maximum
independent edge set is known as the matching number or the edge independence number
denoted as ν(G) [1].

Theorem 1.3. Let G be a simple connected (n,m)−graph and let ν(G) denote the edge

independent number of the graph G. Then,
∑
ein2′

(G) ≤ (ν(G)+1)(2m−ν(G))
2 ·

Proof. Let S = {e1, e2, . . . , ek}, where 1 ≤ k < m, be the largest set of independent edges
in a graph G. It is evident that |S| = ν(G). From theorem 2.10 in [10] it can be seen
that for a simple connected graph G, ψ′

ein2(G) ≤ ν(G) + 1. As discussed in theorem 2.10
of [10], there exists at least one edge e ∈ G and e /∈ S such that the edge e is incident to
two edges in S, say e1 and e2. Thus, at most three colors are required to color the edges
{e1, e2} and all the edges incident to {e1, e2}. In a similar manner at most one new color
can be given to each edge selected from the set S. This implies each edge from the set S
can be assigned a color from the color set {1, 2, . . . , ν(G)} and all the remaining uncolored
edges in G can be colored with the color ν(G) + 1. Hence, the upper bound is given by,

∑
ein2′

(G) ≤ (m− ν(G))(ν(G) + 1) +
ν(G)(ν(G) + 1)

2

=
(ν(G) + 1)(2m− ν(G))

2
·

□
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The equality holds for the complete graph Kn, the star graph K1,n, the cycle graph
C3, the path graph P2, P3, P5, and a few other graphs. It remains an open problem to

characterize the graphs G for which
∑
ein2′

(G) = (ν(G)+1)(2m−ν(G))
2 ·

2. ein2−edge coloring sum of certain graph classes

In this section, we compute the ein2−edge coloring sum of the sun graph, closed
sun graph, antiprism graph, double wheel graph, friendship graph, generalized friendship
graph, and H−graph.

Definition 2.1. Let V = {v1, v2, . . . , vn} be the vertex set of a complete graph Kn and
{v1v2, v2v3, . . . , vnv1} be the edges of the outer rim in Kn. Then, the sun graph Sn,
where n ≥ 3, is a graph obtained by taking the complete graph Kn and the vertices U =
{u1, u2, . . . , un} corresponding to each vertex of Kn and by adding edges u1v1, u1v2, u2v2,
u2v3, . . . , unvn, unv1 (see [3]).

Theorem 2.1. Let n ≥ 3. Then, the edge incident 2-edge coloring sum of the sun graph
Sn is

∑
ein2′

(Sn) = n2 + 3n− 1, where n is the order of the complete graph Kn in Sn.

Proof. From [10], it is well known that the ein2−edge coloring number of the complete
graph Kn is 2. Let {v1, v2, . . . , vn} be the vertex set of Kn and let {u1, u2, . . . , un} be
a copy of V (Kn) such that each ui corresponds to vi in the sun graph Sn. Suppose the
coloring procedure is initiated by giving two colors to the edges of Kn such that exactly
one edge, say edge v1v2, is colored with the color 1 and all the remaining other edges of Kn

is colored with the color 2. Then, it is impossible to use any new color for the remaining
uncolored edges of the sun graph Sn; else, there will exist a path P4 with three distinct
colors. For instance, if the edge u4v5 in the graph S9 is assigned with the color 3, then the
edges of the path v1v2v5u4 receive three distinct colors, a contradiction to the definition
of ein2−edge coloring.

Again, consider if all the edges of the complete graphKn in Sn are colored with one color,
say color 1. Suppose that the edge u1v1 and u5v5 in the graph S9 are colored with the color
2 and color 3, respectively. Then, there exists a path u1v1v5u5 with three distinct colors,
a contradiction to the definition of ein2−edge coloring. Thus, the ein2−edge coloring
number of the sun graph Sn is 2. This implies the maximum coloring sum is obtained
if exactly one edge of Sn is colored with color 1 and the remaining colorless edges are
assigned with color 2. Therefore,∑

ein2′

(Sn) = 2

(
n2 + 3n

2
− 1

)
+ 1

= n2 + 3n− 1.

□

Definition 2.2. A closed sun graph CSn is the graph obtained from the sun graph Sn by
adding the edges u1u2, u2u3, . . . , unu1 (see [3]).

Theorem 2.2. Let n ≥ 3. Then, the edge incident 2−edge coloring number and ein2−edge
coloring sum of the closed sun graph CSn, where n is the order of the complete graph Kn

in CSn, is given by,

ψ′
ein2(CSn) =


n+3
3 , n ≡ 0 (mod 3)

n+2
3 , n ≡ 1 (mod 3)

n+4
3 , n ≡ 2 (mod 3)
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and

∑
ein2′

(CSn) =


3n3+23n2+42n

18 , n ≡ 0 (mod 3)
3n3+20n2+29n+2

18 , n ≡ 1 (mod 3)
3n3+26n2+55n−4

18 , n ≡ 2 (mod 3)

Proof. Consider CSn to be the closed sun graph of order 2n and size n(n+5)
2 . Let {v1, v2, . . . ,

vn} be the vertex set of the complete graph Kn in the closed sun graph CSn. Let
u1, u2, . . . , un be the n vertices corresponding to each vi; 1 ≤ i ≤ n vertex of Kn. The
closed sun graph CSn has a clique of order n, and the ein2−edge coloring number of Kn

is 2 (refer to Theorem 3.2 in [10]). Also, ψ′
ein2(Sn) = 2. Suppose the edges of Kn are

assigned two different colors. Then the ein2−edge coloring number of the graph CSn need
not be a maximum edge coloring. So, all the edges of the complete graph Kn in the graph
CSn are colored with one color. The variation in the ein2−edge coloring number depends
on the number of vertices. Thus, the edge coloring sum of the graph CSn is mentioned
below in three different cases.

Case 1: Assume that n ≡ 0 (mod 3). The ein2−edge coloring number of Sn is 2.
The edges of the sun subgraph in CSn graph can be colored in such a way that exactly
one edge, say edge u1v1, is colored with color 1, and all remaining edges of subgraph Sn
in the graph CSn are colored with color 2. Now, the edges uiui+1, which form the outer
cycle of the graph CSn, are assigned color in the following manner. The edges incident to
the vertices {u1, v1, u2, un} are colored with color 2; else, the ein2−edge coloring condition
fails at the edge receiving the new color. So, the edges u1u2, u2u3, unu1, and un−1un are
colored with color 2. The edge u3u4 can be colored with a new color, say color 3. The
edges u3nu3n+1 in the outer rim of CSn receive new colors. In this case, there are n

3 − 1
edges in the outer edge of the closed sun graph CSn, which can be given n

3 − 1 distinct
colors, whereas the remaining uncolored edges of CSn are all colored with the color 2.
This implies, ψ′

ein2(CSn) = n
3 − 1 + 2 = n+3

3 . In order to get the highest edge coloring

sum, as mentioned above, there are n(n+5)
2 edges in the graph CSn. Out of which n

3 edges
are given one color each from the color set {1, 2, . . . , n3 } and the remaining edges of the

graph CSn are assigned with the
(
n+3
3

)rd
color. Thus,

∑
ein2′

(CSn) =

(
n(n+ 5)

2
− n

3

)(
n+ 3

3

)
+

(
n
3

) (
n+3
3

)
2

=

(
3n2 + 13n

6

)(
n+ 3

3

)
+
n2 + 3n

18

=
3n3 + 23n2 + 42n

18
·

Case 2: Assume that n ≡ 1 (mod 3). As discussed in case 1, n−1
3 − 1 edges in the outer

cycle of the graph CSn are colored with n−1
3 −1 distinct colors. The edges in the subgraph

Sn of the graph CSn are colored in such a way that exactly one edge, say edge u1v1, is

colored with the
(
n−1
3

)rd
color whereas the remaining edges are colored with

(
n+2
3

)rd
color.

Therefore, ψ′
ein2(CSn) =

n−1
3 − 1 + 2 = n+2

3 . Thus, in this case, the ein2−edge coloring
sum of CSn is given by,
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∑
ein2′

(CSn) =

(
n(n+ 5)

2
− n− 1

3

)(
n+ 2

3

)
+

(
n−1
3

) (
n+2
3

)
2

=

(
3n2 + 13n+ 2

6

)(
n+ 2

3

)
+
n2 + n− 2

18

=
3n3 + 20n2 + 29n+ 2

18
·

Case 3: Assume that n ≡ 2 (mod 3). As discussed in case 1, there are n+1
3 − 1 edges

in the outer rim of the graph CSn that can be given one color each from the color set
{1, 2, . . . , n+1

3 − 1}. The edges in the subgraph Sn of the graph CSn are colored in such a

way that exactly one edge, say edge u1v1, is colored with the
(
n+1
3

)rd
color whereas the

remaining edges are colored with
(
n+4
3

)rd
color. Therefore, ψ′

ein2(CSn) =
n+1
3 − 1 + 2 =

n+4
3 . Thus, ∑

ein2′

(CSn) =

(
n(n+ 5)

2
− n+ 1

3

)(
n+ 4

3

)
+

(
n+1
3

) (
n+4
3

)
2

=
(3n2 + 13n− 2)(n+ 4)

18
+
n2 + 5n+ 4

18

=
3n3 + 26n2 + 55n− 4

18
·

□

Definition 2.3. Let U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn} be the vertex set of two
cycles Cn and C ′

n respectively. The antiprism graph, denoted by An, is obtained by joining
the vertices of these two cycles and adding the edges in the form u1v1, u1v2, u2v2, u2v3, . . . ,
unvn, unv1 (see [3]).

Theorem 2.3. Let n ≥ 3. Then, the edge incident 2−edge coloring number and ein2−edge
coloring sum of the antiprism graph An, where n is the order of cycle Cn in An, is given
by,

ψ′
ein2(An) =

{
n+2
2 , n is even

n+1
2 , n is odd.

and ∑
ein2′

(An) =

{
15n2+30n

8 , if n is even
15n2+16n+1

8 , if n is odd.

Proof. The antiprism graph An is a graph of order 2n and size 4n. Let Cn and C ′
n be

the two cycles of An with vertices u1, u2, . . . , un and v1, v2, . . . , vn respectively (here Cn

is considered as the inner cycle whereas C ′
n as the outer cycle). The ein2−edge coloring

number and ein2−edge coloring sum of the graph An are discussed in the following two
cases.

Case 1: Assume that n is even. Suppose the coloring procedure is initiated by as-
signing the edges of the inner cycle (or the outer cycle) in An with n

2 different colors (as

ψ′
ein2(Cn) =

⌊
n
2

⌋
, refer Theorem 1.5 in [10]). Then, it can be observed that all the remain-

ing uncolored edges of the graph An cannot be given more than n
2 colors. This coloring
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approach will not give the maximum edge coloring number for An. Again, if the coloring
procedure of the graph An is initiated by assigning a new edge color to every third edge
of the inner cycle Cn (or the outer cycle C ′

n), whereas, all the other edges in Cn (or C ′
n)

are colored with the same color say, color 1. (Note that here the edge u1u2 is considered
as the zeroth edge, thus making u4u5 the third edge and so on in the cycle graph. This
implies the zeroth edge, third edge, sixth edge, etc., each is given a new color, whereas
the first edge, second edge, fourth edge, etc., are all colored with the same color.) Then,
the remaining uncolored edges of the graph An have to be colored with color 1, or else the
ein2−edge coloring condition fails. This coloring approach will also not give the highest
ein2−edge coloring number. Hence, the edges of the inner cycle and outer cycle are all
colored with one single color. Every viui edge of the graph An receives a new color, where
i ≡ −1 mod 2. Thus, n

2 edges of An are assigned with n
2 different colors, and remaining

all the colorless edges of the antiprism graph An are colored with the color
(
n
2 + 1

)
. This

implies, the ein2−edge coloring number of An is n
2 + 1 = n+2

2 . Therefore, the greatest
ein2−edge coloring sum of An, in this case, is given by,∑

ein2′

(An) =
(
4n− n

2

)(
n+ 2

2

)
+

(
n
2

) (
n+2
2

)
2

=
15n2 + 30n

8
·

Case 2: Assume that n is odd. As discussed above in case 1, every viui edge, where
i ≡ −1 mod 2, of the graph An receives a new color. This implies, n−1

2 edges of An receives

one color each from the color set {1, 2, . . . , n−1
2 }. All the remaining uncolored edges of the

antiprism graph An are colored with the color n−1
2 +1. Therefore, ψ′

ein2(An) =
n−1
2 +1 =

n+1
2 . This coloring approach gives the maximum sum with the highest ψ′

ein2 colors. Thus,

∑
ein2′

(An) =

(
4n− n− 1

2

)(
n+ 1

2

)
+

(
n−1
2

) (
n+1
2

)
2

=
15n2 + 16n+ 1

8
·

□

Definition 2.4. A double wheel graph DWn is a graph defined by 2Cn +K1. That is, a
double wheel graph is a graph obtained by joining all vertices of the two disjoint cycles to
an external vertex [13].

Theorem 2.4. Let n ≥ 3. Then, the edge incident 2−edge coloring number and ein2−edge
coloring sum of the double wheel graph DWn, where n is the order of cycle Cn in DWn,
is given by,

ψ′
ein2(DWn) =


2n+3

3 , n ≡ 0 (mod 3)
2n+1

3 , n ≡ 1 (mod 3)
2n−1

3 , n ≡ 2 (mod 3)

and

∑
ein2′

(DWn) =


44n2+66n

18 , n ≡ 0 (mod 3)
44n2+26n+2

18 , n ≡ 1 (mod 3)
44n2−14n−4

18 , n ≡ 2 (mod 3)
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Proof. Consider DWn to be the double wheel graph of order 2n + 1 and size 4n. The
double wheel graph DWn is a graph obtained by joining all the vertices of two disjoint
cycles, say Cn and C ′

n, to a universal vertex v0. Suppose if all the edges incident the vertex
v0 is colored with two distinct colors, then the highest ein2−edge coloring number used in
the graph DWn is restricted to 2 colors. So, all the edges incident to the universal vertex
must be assigned a single color, as we aim to maximize the edge coloring number. Thus,
the edge incident 2−edge coloring number depends on the coloring pattern that is given
to the edges in the outer cycle of each wheel subgraph in DWn. This is discussed below
in three cases.

Case 1: Assume that n ≡ 0 (mod 3). Let U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}
be the vertex sets of two disjoint cycles Cn and C ′

n respectively. Every third edge of the
outer cycle in a wheel subgraph of the graph DWn is colored with a new color (here, the
edges u1u2 and v1v2 are considered to be the zeroth edge which makes the edges u4u5, v4v5
as the third edge and so on in each cycle). That is, a maximum of 2n

3 colors are required to
color every third edge in the cycles Cn and C ′

n of DWn. The remaining uncolored edges in
each disjoint cycle of the double wheel graph DWn and the edges that are incident to the
vertex v0 are colored with the color 2n

3 + 1. This implies, ψ′
ein2(DWn) =

2n
3 + 1 = 2n+3

3 .
This coloring gives the greatest ein2−edge coloring sum of DWn, hence,∑

ein2′

(DWn) =

(
4n− 2n

3

)(
2n+ 3

3

)
+

(
2n
3

) (
2n+3

3

)
2

=
44n2 + 66n

18
·

Case 2: Assume that n ≡ 1 (mod 3). As discussed in case 1, every third edge is given a
new color. So, at most 2n−2

3 colors are required to color every third edge in both cycles of
the graph DWn. The remaining uncolored edges in each disjoint cycle of DWn and all the
edges that are incident to the vertex v0 are colored with the color 2n−2

3 +1. This implies, in

this case, the ein2−edge coloring number of DWn is 2n+1
3 . The above-mentioned coloring

itself gives the greatest coloring sum, thus,∑
ein2′

(DWn) =

(
4n− 2n− 2

3

)(
2n+ 1

3

)
+

(
2n−2

3

) (
2n+1

3

)
2

=
44n2 + 26n+ 2

18
·

Case 3: Assume that n ≡ 2 (mod 3). As discussed in case 1, every third edge is given a
new color. So, at most 2n−4

3 colors are required to color every third edge in both cycles
of the graph DWn. The remaining uncolored edges in each disjoint cycle of DWn and all
the edges that are incident to the vertex v0 are colored with the color 2n−4

3 +1. Hence, in

this case, ψ′
ein2(DWn) =

2n−4
3 + 1 = 2n−1

3 and the ein2−edge coloring sum is given by,

∑
ein2′

(DWn) =

(
4n− 2n− 4

3

)(
2n− 1

3

)
+

(
2n−4

3

) (
2n−1

3

)
2

=
44n2 − 14n− 4

18
·

□
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Definition 2.5. The friendship graph Fn is obtained by taking n−copies of the cycle graph
C3 with a common vertex. The generalized friendship graph Fn,r is a collection of n−copies
of the cycle graph Cr of order r, meeting at a common vertex (see [6]).

Theorem 2.5. Let n ≥ 2. Then, the edge incident 2-edge coloring sum of the friendship

graph Fn is
∑
ein2′

(Fn) =
5n(n+1)

2 , where Fn is a graph obtained by taking n−copies of the

cycle C3, meeting at a common vertex v.

Proof. The friendship graph Fn is a graph of order 2n+1 obtained by attaching n triangles
to the central vertex v. The ein2−edge coloring number of the graph Fn is n+1 (see [10]).
All the edges incident to the vertex v cannot be colored with two colors as the maximum
number of colors that can be used to color the edges will be restricted to 2. So, the edges
incident to the universal vertex of Fn is colored using the color n + 1. The remaining
colorless edges of the friendship graph are assigned with one of the colors from the color
set {1, 2, . . . , n}. Therefore, ∑

ein2′

(Fn) = 2n(n+ 1) +
n(n+ 1)

2

=
5n(n+ 1)

2
·

□

Corollary 2.1. For the generalized friendship graph Fn,r, where n ≥ 2 and r = 4, 5,

(1)
∑
ein2′

(Fn,4) =
7n(n+1)

2 ·

(2)
∑
ein2′

(Fn,5) =
9n(n+1)

2 ·

The proof of the above result is similar to the theorem 2.5.

Theorem 2.6. Let Fn,r be the generalized friendship graph having n−copies of the cycle
graph Cr (of order r ≥ 4), meeting at a common vertex v. Then, for n ≥ 2 and r ≥ 6,

∑
ein2′

(Fn,r) =

{
n2(r2−4)+2n(r+2)

4 , when r is even
n2(r2−9)+2n(r+3)

4 , when r is odd.

Proof. Let v ∈ V (Fn,r) be a vertex with maximum degree, that is, deg(v) = ∆(Fn,r). The
size of the graph Fn,r is nr. From [10] it can be observed that the ein2−edge coloring
number of Fn,r is n

⌊
r−2
2

⌋
+ 1. The edge coloring sum of the generalized friendship graph

is discussed in the following two cases.

Case 1: Assume that r is even. All the edges incident to the universal vertex of the graph
Fn,r are colored with the same color. In order to get the greatest sum, these 2n edges are
colored with the color n

(
r−2
2

)
+1. It is to be noted that in a generalized friendship graph,

two edges in each copy of the cycle Cr are already colored. Since, ψ′
ein2(Cr) =

r
2 . So, the

colorless edges in n−copies of cycle Cr in the graph Fn,r will be assigned with one color



A. JOSEPH, C. DOMINIC: EDGE INCIDENT 2-EDGE COLORING SUM OF GRAPHS 107

from the color set {1, 2, . . . , n(r−2)
2 } such that each color will appear exactly twice. Thus,

∑
ein2′

(Fn,r) = 2

(
n(r−2)

2

)(
n(r−2)

2 + 1
)

2
+ 2n

(
n(r − 2)

2
+ 1

)
=

(nr − 2n)(nr + 2n+ 2) + 8n

4

=
n2(r2 − 4) + 2n(r + 2)

4
·

Case 2: Assume that r is odd. As discussed in case 1, all the edges incident to the central

vertex v are assigned with the color n(r−3)
2 + 1. Since each cycle Cr of the graph Fn,r is

odd length. so, the remaining uncolored edges in the n−copies of cycle Cr in the graph

Fn,r are colored with one color from the color set {1, 2, . . . , n(r−3)
2 } such that each color

will appear exactly twice except the last edge. The last edge in each Cr of Fn,r is colored

with the color n(r−3)
2 + 1. Thus,

∑
ein2′

(Fn,r) = 2

(
n(r−3)

2

)(
n(r−3)

2 + 1
)

2
+ 3n

(
n(r − 3)

2
+ 1

)
=

(nr − 3n)2 + 2n(r + 3) + 6n2(r − 3)

4

=
n2(r2 − 9) + 2n(r + 3)

4
·

□

Definition 2.6. The H-graph H(r), r ≥ 2, is the 3−regular graph of order 6r, with vertex
set V (H(r)) = {ui, vi, wi : 0 ≤ i ≤ 2r − 1} and edge set (subscripts are taken modulo 2r)
E(H(r)) = {(ui, ui+1), (wi, wi+1),
(ui, vi), (vi, wi) : 0 ≤ i ≤ 2r − 1} ∪ {(v2i, v2i+1) : 0 ≤ i ≤ r − 1} (see [16]).

Theorem 2.7. Let H(r), r ≥ 2 be a H-graph. Then,

∑
ein2′

(H(r)) =


100r2+75r

9 , r ≡ 0 (mod 3)
100r2+121r−5

9 , r ≡ 1 (mod 3)
100r2+98r−2

9 , r ≡ 2 (mod 3).

Proof. Let V (H(r)) = {ui, vi, wi : 0 ≤ i ≤ 2r − 1} be the vertex set of the H-graph
H(r), r ≥ 2. Clearly, H(r) is a 3−regular graph with the order 6r and size 9r. It can
be observed that a new color is assigned to every third edge (we consider the edge u0u1
as the zeroth edge whereas the edges u3u4 and w0w1 as the third edge from the edge
u0u1). That is, if the edge u0u1 is colored with the color 1, then a new color, say color 2
and color 3, can be assigned to the edges u3u4 and w0w1 respectively, whereas the edges
u1u2, u2u3, u0v0, u1v1, v0v1, v0w0, and v1w1, etc. are colored with the color ψ′

ein2H(r) (re-
fer theorem 4.11 in [10] for more clarity). This implies the variation of ein2−edge coloring
of the H-graph depends on the number of vertices. Hence, we have the following three
cases.

Case 1: When r ≡ 0 (mod 3), ψ′
ein2(H(r)) = 4r

3 + 1 = 4r+3
3 (see [10]). Assume that
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the edge u0u1 of the graph H(r) is colored with color 1. Then, as discussed above, every
third edge receives a new color from the color set {2, 3, . . . , 4r3 }. There are exactly

4r
3 edges

in the graph H(r) that are colored with 4r
3 distinct colors. The remaining uncolored edges

are all colored with the color 4r+3
3 to get the highest edge coloring sum. Thus,

∑
ein2′

(H(r)) =

(
4r
3

) (
4r+3
3

)
2

+

(
9r − 4r

3

)(
4r + 3

3

)
=

16r2 + 12r

18
+

23r(4r + 3)

9

=
100r2 + 75r

9
·

Case 2: When r ≡ 1 (mod 3), ψ′
ein2(H(r)) = 4r+2

3 + 1 = 4r+5
3 (see [10]). As discussed

earlier, if the edge u0u1 of the graph H(r) is colored with color 1, then every third edge
receives a new color from the color set {2, 3, . . . , 4r+2

3 }. Thus, 4r+2
3 edges of the graph

H(r) receives 4r+2
3 different colors. The remaining uncolored edges of the graph H(r) are

colored with the color 4r+5
3 . Hence, the greatest sum is given by,

∑
ein2′

(H(r)) =

(
4r+2
3

) (
4r+5
3

)
2

+

(
9r − 4r + 2

3

)(
4r + 5

3

)
=

16r2 + 28r + 10

18
+

(23r − 2)(4r + 5)

9

=
100r2 + 121r − 5

9
·

Case 3: When r ≡ 2 (mod 3), ψ′
ein2(H(r)) = 4r+1

3 + 1 = 4r+4
3 (see [10]). As discussed

above, 4r+1
3 edges of the graph H(r) are colored with one color each from the color set

{1, 2, . . . , 4r+1
3 }. The remaining uncolored edges of the graph H(r) are colored with the

color 4r+4
3 . Thus,

∑
ein2′

(H(r)) =

(
4r+1
3

) (
4r+4
3

)
2

+

(
9r − 4r + 1

3

)(
4r + 4

3

)
=

16r2 + 20r + 4 + (46r − 2)(4r + 4)

18

=
100r2 + 98r − 2

9
·

□

Conclusion and Further scopes

In this paper, the concept of edge incident 2−edge coloring sum has been introduced.
In section 2, we found the edge incident 2−edge coloring sum of the sun graph, closed
sun graph, antiprism graph, double wheel graph, friendship graph, generalized friendship
graph, and the H−graph. This study can be further extended to find the edge incident
2−edge coloring sum of some graph products and cubic graphs.
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