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THE NORDHAUS-GADDUM-TYPE INEQUALITIES FOR THE

NIRMALA INDICES

VIRENDRA KUMAR1∗, SHIBSANKAR DAS2, §

Abstract. Nowadays, deducing the bounds and relations between known topological
indices is an interesting tool in Chemical Graph Theory (CGT). This article investigates
the mathematical properties of the recently defined Nirmala indices in terms of some
graph invariants. At the outset, we establish some mathematical relations between the
Nirmala indices (Nirmala index, first and second inverse Nirmala indices) and other
well-established degree-based topological indices. Then, some Nordhaus-Gaddum-type
inequalities for the combination of the Nirmala indices of a graph and its complement
are obtained.
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1. Introduction

In CGT, molecular structure of a chemical compound is interpreted as a graph in which
atoms and bonds of the molecular structure are correlated to the vertices and edges of
the graph, respectively. Here, molecular structures are mathematically analyzed through
theoretical and computational graphical techniques. A topological index is a mathematical
parameter of a molecular graph that correlates its associated physical characteristics,
chemical properties and biological activity. Descriptors based on molecular graphs have
been authenticated as a subsidiary in numerous chemical areas. There are many such
molecular descriptors available at the present time, but very few of them have been found
accessible for their feasible application.

Let H = (V (H), E(H)) denote a simple and connected graph where V (H) and E(H)
represent the vertex and edge sets, respectively. For a vertex s ∈ V (H), the degree dH(s)
is the total number of edges incident to s. Also, let δ1 and ∆1 be the minimum and
maximum degrees of H, respectively. Now, let H be the complement graph of the graph
H with δ2 and ∆2 as its minimum and maximum degrees, respectively [21]. Furthermore,
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ment of Mathematics, 2025; all rights reserved.

120



VIRENDRA KUMAR, SHIBSANKAR DAS: NG-TYPE INEQ. FOR THE NIRMALA INDICES 121

if we take |E(H)| = m and |V (H)| = n then |V (H)| = n and |E(H)| =
(
n
2

)
−m. Also, we

have the following relations of the graph H and H as follows:

δ2 = n− 1−∆1, ∆2 = n− 1− δ1 and dH(s) + dH(s) = n− 1.

We now briefly discuss some notable degree-based topological indices employed in the
later sections of this article. During the year 1972, I. Gutman and N. Trinajstić proposed
the idea of the Zagreb indices of a graph H. The mathematical definition of the first
Zagreb index (M1(H)) is defined as follows:

M1(H) =
∑

s∈V (H)

d2H(s) =
∑

st∈E(H)

(dH(s) + dH(t)), (1)

whereas the second Zagreb index (M2(H)) is described as

M2(H) =
∑

st∈E(H)

dH(s) · dH(t). (2)

In 2015, forgotten index was introduced by B. Furtula and I. Gutman in [6]. This index
is a generalization of first Zagreb index and is defined as follows:

F(H) =
∑

s∈V (H)

d3H(s) =
∑

st∈E(H)

(d2H(s) + d2H(t)). (3)

The chemical applicability of the forgotten index and its relations with the first Zagreb
index and the second Zagreb index were also reported in [6, 23].

Randić index [17] is an important degree-based topological index utilized extensively in
chemistry and pharmacology. In 1975, M. Randić proposed this index and defined it as
follows:

R(H) =
∑

st∈E(H)

1√
dH(s) · dH(t)

. (4)

A variety of advancements and modifications have been introduced to enhance its potential
power [14]. The reciprocal Randić index is one such modification that is defined as

RR(H) =
∑

st∈E(H)

√
dH(s) · dH(t). (5)

The symmetric division (deg) index and inverse sum (indeg) index draw the attention
of researchers because of their feasible prediction potential [1, 5, 19]. They were proposed
more than 10 years ago [19] and defined as

SDD(H) =
∑

st∈E(H)

(
dH(s)

dH(t)
+

dH(t)

dH(s)

)
(6)

and

ISI(H) =
∑

st∈E(H)

dH(s)dH(t)

dH(s) + dH(t)
. (7)

Recently, I. Gutman introduced the Sombor index in [7], which is a novel degree-
dependent topological index. It is mathematically defined as

SO(H) =
∑

st∈E(H)

√
d2H(s) + d2H(t). (8)

Several articles on the Sombor index have been reported for its chemical applicability and
relations with other degree-based topological indices [8, 18,20].
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Being inspired by the definition of the Sombor index, V.R. Kulli proposed the Nirmala
index [9] of a graph H and mathematically defined it as follows:

N(H) =
∑

st∈E(H)

√
dH(s) + dH(t). (9)

Further, Kulli and Gutman introduced the first inverse Nirmala index (denoted as IN1(H))
and second inverse Nirmala index (denoted as IN2(H)) [11] of a molecular graph H and
defined them as follows:

IN1(H) =
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
=

∑
st∈E(H)

√
dH(s) + dH(t)

dH(s)dH(t)
, (10)

IN2(H) =
∑

st∈E(H)

1√
1

dH(s) +
1

dH(t)

=
∑

st∈E(H)

√
dH(s)dH(t)

dH(s) + dH(t)
. (11)

Currently, the M-polynomial-based derivation formulas of the Nirmala indices and its
generalized version ((a, b)-Nirmala index) are proposed in [2, 3]. The computation of
Nirmala indices for different dendrimers, hex-derived networks and standard graphs are
reported in the articles [2, 3, 16]. A QSPR (quantitative-structure property relationship)
study of the Nirmala indices to predict the physico-chemical properties of COVID-19
antiviral drugs was performed in [4] Computation of The Nirmala indices and associated
entropy measures was performed in [12] for silicon carbide network.

Very recently, the structure sensitivity, abruptness and chemical applicability of some
novel degree-based topological indices were tested in the article [13]. Here, a QSPR analysis
was performed over the physico-chemical properties of octane isomers to test the predictive
potential of the degree-based topological indices. The first inverse Nirmala index (IN1)
predicts the critical temperature (CT), molar refraction (MR), molar volume (MV) and
standard heat of formation (DHFORM) with correlation-coefficients (R) −0.7378, 0.9824,
0.9503 and 0.7642, respectively of the isomers. However, the second Nirmala index (IN2)
forecasts the total surface area (TSA) of octane isomers with R-value −0.9369. The
obtained results in [13] motivate us to investigate the mathematical bounds and relations
of the Nirmala indices with other standard degree-based topological indices. Keeping in
mind the above-discussed applicability, all three Nirmala indices can be good candidates
for future experimentation in quantitative-structure property and activity relationship
analysis to predict the physico-chemical properties of different molecular compounds. Also,
the researchers may apply the Nirmala energy and Nirmala matrices associated with the
Nirmala indices for QSPR/QSAR investigation as future work.

The main focus of this research article is to determine mathematical relations of the
Nirmala indices with some well-known degree-based topological indices by involving some
graph invariants. The methodology for the construction of the remaining article is dis-
cussed below. Section 2 commences with the bounds of the first and second inverse Nirmala
indices of graph H in terms of its size m, maximum degree ∆1 and minimum degree δ1.
Further, the mathematical inequalities among the Nirmala indices and some essential rela-
tions for each of the three Nirmala indices with the above-introduced notable degree-based
topological indices are determined. Additionally, the Nordhaus-Gaddum-type inequalities
for the combination of the Nirmala indices of a graph and its complement are established
in Section 3 by using the obtained results of Section 2. Finally, we conclude in Section 4.
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2. Bounds on the Nirmala Indices for General Graphs

Here, we introduce the bounds for the Nirmala indices of graph H in terms of size m,
maximum degree ∆1 and minimum degree δ1. In addition, we present some mathematical
relations among the Nirmala indices and some more well-known degree-based topological
indices to deduce the Nordhaus-Gaddum-type results.

2.1. Bounds Involving Size, Maximum and Minimum Degrees.

Theorem 2.1 ([10]). Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then√

2δ1 ·m ≤ N(H) ≤
√
2∆1 ·m,

with equality if and only if the graph is regular.

Proposition 2.1. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then

(i)
√
2δ1
∆1

·m ≤ IN1(H) ≤
√
2∆1
δ1

·m,

(ii) δ1√
2∆1

·m ≤ IN2(H) ≤ ∆1√
2δ1

·m.

Moreover, the equalities hold if and only if the graph is regular.

The proof of the above theorem is straight from the definitions of the first inverse
Nirmala index (IN1(H)) and the second inverse Nirmala index (IN2(H)), and left as an
exercise to the interested readers.

2.2. Bounds Among the Nirmala Indices.

Theorem 2.2. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then, the Nirmala indices of the
graph H hold the following relationship among each other

2δ1
∆1

· IN2(H) ≤ δ1 · IN1(H) ≤ N(H) ≤ ∆1 · IN1(H) ≤ 2∆1

δ1
· IN2(H).

Moreover, the equalities hold if and only if the graph is regular.

Proof. From Equations 9 and 10, we obtain

N(H) =
∑

st∈E(H)

√
dH(s) + dH(t) =

∑
st∈E(H)

√
dH(s)dH(t) ·

√
dH(s) + dH(t)√
dH(s)dH(t)

=
∑

st∈E(H)

√
dH(s)dH(t) ·

√
1

dH(s)
+

1

dH(t)
≤ ∆1 · IN1(H).

Similarly, N(H) ≥ δ1 · IN1(H).

∴ δ1 · IN1(H) ≤ N(H) ≤ ∆1 · IN1(H). (12)

Next, from Equations 10 and 11, we have

IN1(H) =
∑

st∈E(H)

√
dH(s) + dH(t)

dH(s)dH(t)
=

∑
st∈E(H)

dH(s) + dH(t)

dH(s)dH(t)
·

√
dH(s)dH(t)

dH(s) + dH(t)

=
∑

st∈E(H)

(
1

dH(s)
+

1

dH(t)

)
·

√
dH(s)dH(t)

dH(s) + dH(t)
≤ 2

δ1
· IN2(H).
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Similarly, IN1(H) ≥ 2
∆1

· IN2(H).

∴
2

∆1
· IN2(H) ≤ IN1(H) ≤ 2

δ1
· IN2(H). (13)

Now multiply the left and right inequalities of Equation 13 by δ1 and ∆1, respectively.
And, then by using Equations 12 and 13 we get the required mathematical relation among
the Nirmala indices.

To show the equality, let us consider H to be a r-regular graph, then dH(s) = r for
every s ∈ V (H). Also, δ1 = ∆1 = r. Therefore, the Nirmala index

N(H) =
∑

st∈E(H)

√
dH(s) + dH(t) =

√
2r ·m. (14)

Now compute the following terms associated to the first inverse Nirmala index

δ1 · IN1(H) = ∆1 · IN1(H) = r ·
∑

st∈E(H)

√
dH(s) + dH(t)

dH(s)dH(t)
= r ·

∑
st∈E(H)

√
r + r

r2
=

√
2r ·m.

(15)

Furthermore, examine the terms involving the second inverse Nirmala index

2δ1
∆1

· IN2(H) =
2∆1

δ1
· IN2(H) = 2 ·

∑
st∈E(H)

√
dH(s)dH(t)

dH(s) + dH(t)
= 2 ·

∑
st∈E(H)

√
r2

2r

=
√
2r ·m. (16)

Combining Equations 14, 15 and 16, we obtain the required equality relationship. □

2.3. Bounds Involving the First Zagreb Index.

Theorem 2.3. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then

(i) 1√
2∆1

·M1(H) ≤ N(H) ≤ 1√
2δ1

·M1(H),

(ii) 1√
2∆

3/2
1

·M1(H) ≤ IN1(H) ≤ 1√
2δ

3/2
1

·M1(H),

(iii) δ1

2
√
2∆

3/2
1

·M1(H) ≤ IN2(H) ≤ ∆1

2
√
2δ

3/2
1

·M1(H).

Moreover, equalities (left and right) hold if and only if the graph is regular.

Proof. (i) From Equations 1 and 9, we have

N(H) =
∑

st∈E(H)

√
dH(s) + dH(t) =

∑
st∈E(H)

dH(s) + dH(t)√
dH(s) + dH(t)

≤ 1√
2δ1

·M1(H),

and similarly N(H) ≥ 1√
2∆1

·M1(H).

(ii) From Equations 1 and 10, we have

IN1(H) =
∑

st∈E(H)

√
dH(s) + dH(t)

dH(s)dH(t)
=

∑
st∈E(H)

dH(s) + dH(t)√
dH(s)dH(t)(dH(s) + dH(t))

≤ 1
√
2δ

3/2
1

·M1(H),
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and similarly IN1(H) ≥ 1√
2∆

3/2
1

·M1(H).

(iii) From Equations 1 and 11, we have

IN2(H) =
∑

st∈E(H)

√
dH(s)dH(t)

dH(s) + dH(t)
=

∑
st∈E(H)

√
dH(s)dH(t) · (dH(s) + dH(t))

(dH(s) + dH(t))3/2

≤ ∆1

2
√
2δ

3/2
1

·M1(H),

and similarly IN2(H) ≥ δ1

2
√
2∆

3/2
1

·M1(H). Hence the proof.

□

2.4. Bounds Involving the Second Zagreb Index.

Theorem 2.4. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then

(i)
√

2
∆1

· M2(H)
∆1

≤ N(H) ≤
√

2
δ1

· M2(H)
δ1

,

(ii)
√

2
∆1

· M2(H)
∆2

1
≤ IN1(H) ≤

√
2
δ1

· M2(H)
δ21

,

(iii) 1√
2∆1

· M2(H)
∆1

≤ IN2(H) ≤ 1√
2δ1

· M2(H)
δ1

.

Moreover, equalities (left and right) holds if and only if the graph is regular.

Proof. (i) From Equations 2 and 9, we have

N(H) =
∑

st∈E(H)

√
dH(s) + dH(t) =

∑
st∈E(H)

√
dH(s) + dH(t)

dH(s)dH(t)
· dH(s)dH(t)√

dH(s)dH(t)

=
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
· dH(s)dH(t)√

dH(s)dH(t)
≤

∑
st∈E(H)

√
2

δ1
· dH(s)dH(t)

δ1
=

√
2

δ1
· M2(H)

δ1
,

and similarly N(H) ≥
√

2

∆1
· M2(H)

∆1
.

(ii) From Equations 2 and 10, we have

IN1(H) =
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
=

∑
st∈E(H)

√
1

dH(s)
+

1

dH(t)
· dH(s)dH(t)

dH(s)dH(t)

≤
∑

st∈E(H)

√
2

δ1
· dH(s)dH(t)

δ21
=

√
2

δ1
· M2(H)

δ21
,

and similarly IN1(H) ≥
√

2

∆1
· M2(H)

∆2
1

.

(iii) From Equations 2 and 11, we have

IN2(H) =
∑

st∈E(H)

√
dH(s)dH(t)

dH(s) + dH(t)
=

∑
st∈E(H)

√
dH(s)dH(t)√

dH(s) + dH(t)
·
√
dH(s)dH(t)√
dH(s)dH(t)

=
∑

st∈E(H)

1√
2δ1

· dH(s)dH(t)

δ1
=

1√
2δ1

· M2(H)

δ1
,
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and similarly IN2(H) ≥ 1√
2∆1

· M2(H)
∆1

. Hence the proof.

□

2.5. Bounds Involving Forgotten Index.

Theorem 2.5. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then

(i)
√

δ1
2 · F (H)

∆2
1

≤ N(H) ≤
√

∆1
2 · F (H)

δ21
,

(ii) 1√
2∆1

· F (H)
∆2

1
≤ IN1(H) ≤ 1√

2δ1
· F (H)

δ21
,

(iii)
√

δ1
2 · F (H)

2∆2
1

≤ IN2(H) ≤
√

∆1
2 · F (H)

2δ21
,

moreover, equalities hold if and only if the graph is regular.

Proof. (i) From Equations 3 and 9, we have

N(H) =
∑

st∈E(H)

√
dH(s) + dH(t) =

∑
st∈E(H)

√
dH(s) + dH(t)

d2H(s) + d2H(t)
· (d2H(s) + d2H(t))

≤
∑

st∈E(H)

√
2∆1

2δ21
· (d2H(s) + d2H(t)) =

√
∆1

2
· F (H)

δ21
,

and similarly N(H) ≥
√

δ1
2

· F (H)

δ21
.

(ii) From Equations 3 and 10, we have

IN1(H) =
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
=

∑
st∈E(H)

√
1

dH(s)
+

1

dH(t)
·
d2H(s) + d2H(t)

d2H(s) + d2H(t)

≤
∑

st∈E(H)

√
2

δ1
·
d2H(s) + d2H(t)

2δ21
=

1√
2δ1

· F (H)

δ21
,

and similarly IN1(H) ≥ 1√
2∆1

· F (H)

∆2
1

.

(iii) From Equations 3 and 11, we have

IN2(H) =
∑

st∈E(H)

√
dH(s)dH(t)

dH(s) + dH(t)
=

∑
st∈E(H)

1√
1

dH(s) +
1

dH(t)

·
d2H(s) + d2H(t)

d2H(s) + d2H(t)

≤
∑

st∈E(H)

√
∆1

2
·
d2H(s) + d2H(t)

2δ21
=

√
∆1

2
· F (H)

2δ21
,

and similarly IN2(H) ≥
√

δ1
2 · F (H)

2∆2
1
. Hence the proof.

□

2.6. Bounds Involving the Randić Index.

Theorem 2.6. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then

(i)
√
2δ

3/2
1 ·R(H) ≤ N(H) ≤

√
2∆

3/2
1 ·R(H),

(ii)
√
2δ1 ·R(H) ≤ IN1(H) ≤

√
2∆1 ·R(H),
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(iii)
δ21√
2∆1

·R(H) ≤ IN2(H) ≤ ∆2
1√

2δ1
·R(H),

the equalities are retained if and only if the graph is regular.

Proof. (i) From Equations 4 and 9, we have

N(H) =
∑

st∈E(H)

√
dH(s) + dH(t) =

∑
st∈E(H)

√
dH(s) + dH(t) ·

√
dH(s)dH(t)√
dH(s)dH(t)

≤
∑

st∈E(H)

√
2∆1 ·

∆1√
dH(s)dH(t)

=
√
2∆

3/2
1 ·R(H),

and similarly N(H) ≥
√
2δ

3/2
1 ·R(H).

(ii) From Equations 4 and 10, we have

IN1(H) =
∑

st∈E(H)

√
dH(s) + dH(t)

dH(s)dH(t)
≤

∑
st∈E(H)

√
2∆1√

dH(s)dH(t)
=

√
2∆1 ·R(H),

and similarly IN1(H) ≥
√
2δ1 ·R(H).

(iii) From Equations 4 and 11, we have

IN2(H) =
∑

st∈E(H)

√
dH(s)dH(t)

dH(s) + dH(t)
=

∑
st∈E(H)

dH(s)dH(t)√
dH(s) + dH(t)

· 1√
dH(s)dH(t)

≤
∑

st∈E(H)

∆2
1√
2δ1

· 1√
dH(s)dH(t)

=
∆2

1√
2δ1

·R(H),

and similarly IN2(H) ≥ δ21√
2∆1

·R(H). Hence the proof.

□

2.7. Bounds Involving the Reciprocal Randić Index.

Theorem 2.7. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then

(i)
√

2
∆1

· RR(H) ≤ N(H) ≤
√

2
δ1

· RR(H),

(ii)
√

2
∆1

· RR(H)
∆1

≤ IN1(H) ≤
√

2
δ1

· RR(H)
δ1

,

(iii) 1√
2∆1

· RR(H) ≤ IN2(H) ≤ 1√
2δ1

· RR(H).

Moreover, equality (left and right) holds if and only if the graph is regular.

Proof. (i) From Equations 5 and 9, we have

N(H) =
∑

st∈E(H)

√
dH(s) + dH(t) =

∑
st∈E(H)

√
dH(s) + dH(t)√
dH(s)dH(t)

·
√
dH(s)dH(t)

=
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
·
√
dH(s)dH(t)

≤
∑

st∈E(H)

√
2

δ1
·
√
dH(s)dH(t) =

√
2

δ1
· RR(H),
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and similarly N(H) ≥
√

2
∆1

· RR(H).

(ii) From Equations 5 and 10, we have

IN1(H) =
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
=

∑
st∈E(H)

√
1

dH(s)
+

1

dH(t)
·
√
dH(s)dH(t)√
dH(s)dH(t)

≤
∑

st∈E(H)

√
2

δ1
·
√
dH(s)dH(t)

δ1
=

√
2

δ1
· RR(H)

δ1
,

and similarly IN1(H) ≥
√

2

∆1
· RR(H)

∆1
.

(iii) From Equations 5 and 11, we have

IN2(H) =
∑

st∈E(H)

√
dH(s)dH(t)

dH(s) + dH(t)
≤

∑
st∈E(H)

√
dH(s)dH(t)√

2δ1
≤ RR(H)√

2δ1
,

and similarly IN2(H) ≥ RR(H)√
2∆1

. Hence the proof.

□

2.8. Bounds Involving Symmetric Division (Deg) Index.

Theorem 2.8. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then

(i)
√

δ1
2 · δ1

∆1
· SDD(H) ≤ N(H) ≤

√
∆1
2 · ∆1

δ1
· SDD(H),

(ii) δ1
∆1

· SDD(H)√
2∆1

≤ IN1(H) ≤ ∆1
δ1

· SDD(H)√
2δ1

,

(iii)
√

δ1
2 · δ1

2∆1
· SDD(H) ≤ IN2(H) ≤

√
∆1
2 · ∆1

2δ1
· SDD(H).

Moreover, in the above boundness, the equalities hold if and only if the graph is regular.

Proof. (i) From Equations 6 and 9, we have

N(H) =
∑

st∈E(H)

√
dH(s) + dH(t) =

∑
st∈E(H)

√
dH(s) + dH(t)(
d2H(s)+d2H(t)

dH(s)·dH(t)

) ·
(
d2H(s) + d2H(t)

dH(s) · dH(t)

)

=
∑

st∈E(H)

√
dH(s) + dH(t)(
dH(s)
dH(t) +

dH(t)
dH(s)

) ·
(
dH(s)

dH(t)
+

dH(t)

dH(s)

)

≤
∑

st∈E(H)

√
2∆1

2δ1
∆1

·
(
dH(s)

dH(t)
+

dH(t)

dH(s)

)
=

√
∆1

2
· ∆1

δ1
· SDD(H),

and similarly N(H) ≥
√

δ1
2

· δ1
∆1

· SDD(H).

(ii) From Equations 6 and 10, we have

IN1(H) =
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
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=
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
· 1(

dH(s)
dH(t) +

dH(t)
dH(s)

) ·
(
dH(s)

dH(t)
+

dH(t)

dH(s)

)

≤
∑

st∈E(H)

√
2

δ1
· ∆1

2δ1
·
(
dH(s)

dH(t)
+

dH(t)

dH(s)

)
=

∆1

δ1
· SDD(H)√

2δ1
,

and similarly IN1(H) ≥ δ1
∆1

· SDD(H)√
2∆1

.

(iii) From Equations 6 and 11, we have

IN2(H) =
∑

st∈E(H)

1√
1

dH(s) +
1

dH(t)

=
∑

st∈E(H)

1√
1

dH(s) +
1

dH(t)

· 1(
dH(s)
dH(t) +

dH(t)
dH(s)

) ·
(
dH(s)

dH(t)
+

dH(t)

dH(s)

)

≤
∑

st∈E(H)

√
∆1

2
· ∆1

2δ1
·
(
dH(s)

dH(t)
+

dH(t)

dH(s)

)
=

√
∆1

2
· ∆1

2δ1
· SDD(H),

and similarly IN2(H) ≥
√

δ1
2 · δ1

2∆1
· SDD(H). Hence the proof.

□

2.9. Bounds Involving Inverse Sum (Indeg) Index.

Theorem 2.9. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively.

(i) 2
√
2δ1

∆1
· ISI(H) ≤ N(H) ≤ 2

√
2∆1
δ1

· ISI(H),

(ii) 2
√
2

∆
3/2
1

· ISI(H) ≤ IN1(H) ≤ 2
√
2

δ
3/2
1

· ISI(H),

(iii)
√

2
∆1

· ISI(H) ≤ IN2(H) ≤
√

2
δ1

· ISI(H).

Moreover, in the above boundness, the equalities hold if and only if the graph is regular.

Proof. (i) From Equations 7 and 9, we have

N(H) =
∑

st∈E(H)

√
dH(s) + dH(t)

=
∑

st∈E(H)

√
dH(s) + dH(t) · dH(s) + dH(t)

dH(s)dH(t)
· dH(s)dH(t)

dH(s) + dH(t)

=
∑

st∈E(H)

dH(s)dH(t)

dH(s) + dH(t)
·
(

1

dH(s)
+

1

dH(t)

)
·
√
dH(s) + dH(t) ≤ 2

√
2∆1

δ1
· ISI(H),

and similarly N(H) ≥ 2
√
2δ1

∆1
· ISI(H).

(ii) From Equations 7 and 10, we have

IN1(H) =
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
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=
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
· dH(s) + dH(t)

dH(s)dH(t)
· dH(s)dH(t)

dH(s) + dH(t)

=
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
·
( 1

dH(s)
+

1

dH(t)

)
· dH(s)dH(t)

dH(s) + dH(t)

≤ 2
√
2

δ
3/2
1

· ISI(H),

and similarly IN1(H) ≥ 2
√
2

∆
3/2
1

· ISI(H).

(iii) From Equations 7 and 11, we have

IN2(H) =
∑

st∈E(H)

√
dH(s)dH(t)

dH(s) + dH(t)

=
∑

st∈E(H)

√
dH(s)dH(t)

dH(s) + dH(t)
·
√

dH(s) + dH(t)√
dH(s)dH(t)

·
√
dH(s)dH(t)√

dH(s) + dH(t)

=
∑

st∈E(H)

dH(s)dH(t)

dH(s) + dH(t)
·

√
1

dH(s)
+

1

dH(t)
≤

√
2

δ1
· ISI(H),

and similarly IN2(H) ≥
√

2
∆1

· ISI(H). Hence the proof.

□

2.10. Bounds Involving the Sombor Index.

Theorem 2.10 ( [10]). Let H be the connected graph of order n and size m with maximum

and minimum degrees ∆1 and δ1, respectively. Then SO(H)√
∆1

≤ N(H) ≤ SO(H)√
δ1

. Moreover,

equality (left and right) holds if and only if the graph is regular.

Theorem 2.11. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then

(i) 1

∆
3/2
1

· SO(H) ≤ IN1(H) ≤ 1

δ
3/2
1

· SO(H),

(ii)
√
δ1

2∆1
· SO(H) ≤ IN2(H) ≤

√
∆1

2δ1
· SO(H).

Moreover, the equalities are attained if and only if the graph is regular.

Proof. (i) From Equations 8 and 10, we have

IN1(H) =
∑

st∈E(H)

√
1

dH(s)
+

1

dH(t)
=

∑
st∈E(H)

√
1

dH(s)
+

1

dH(t)
·

√
d2H(s) + d2H(t)√
d2H(s) + d2H(t)

≤
∑

st∈E(H)

√
2

δ1
·

√
d2H(s) + d2H(t)√

δ1
2 + δ1

2
=

1

δ
3/2
1

· SO(H),

and similarly IN1(H) ≥ 1

∆
3/2
1

· SO(H).
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(ii) From Equations 8 and 11, we have

IN2(H) =
∑

st∈E(H)

√
dH(s)dH(t)

dH(s) + dH(t)
=

∑
st∈E(H)

1√
1

dH(s) +
1

dH(t)

·

√
d2H(s) + d2H(t)√
d2H(s) + d2H(t)

≤
∑

st∈E(H)

1√
2
∆1

·

√
d2H(s) + d2H(t)√

δ1
2 + δ1

2
=

√
∆1

2δ1
· SO(H),

and similarly IN2(H) ≥
√
δ1

2∆1
· SO(H). Hence the proof.

□

3. Nordhaus-Gaddum-type Inequalities for the Nirmala Indices

Nordhaus-Gaddum results have been often reported in the field of CGT to investigate
graph invariants. In 1956, E.A. Nordhaus and J.W. Gaddum investigated the bounds
of the chromatic number of the graph and its complement [15]. Li Zhang and Baoyin-
dureng Wu gave the Nordhaus-Gaddum type inequalities [22] for the Zagreb index, general
Randić index and the Wiener index in 2005, inspired by the bounds of chromatic num-
ber. Recently, for the Sombor index, Nordhus-Gaddum type bounds have been reported
in [20]. Motivated by these results, we establish some Nordhaus-Gaddum-type results for
the combination of the Nirmala indices of graph H and its complement with the help of
previously derived results.

Proposition 3.1. Let us consider a connected graph H with order n and size m having
maximum and minimum degrees ∆1 and δ1, respectively. Then

(i) m ·
√
2δ1 +

[(
n
2

)
−m

]
·
√

2(n− 1−∆1) ≤ N(H) +N(H) ≤ m ·
√
2∆1

+
[(

n
2

)
−m

]
·
√

2(n− 1− δ1)

(ii) m ·
√
2δ1
∆1

+
[(

n
2

)
−m

]
·
√

2(n−1−∆1)

(n−1−δ1)
≤ IN1(H) + IN1(H) ≤ m ·

√
2∆1
δ1

+
[(

n
2

)
−m

]
·
√

2(n−1−δ1)

(n−1−∆1)
,

(iii) m · δ√
2∆1

+
[(

n
2

)
−m

]
· (n−1−δ1)√

2(n−1−∆1)
≤ IN2(H) + IN2(H) ≤ m · ∆√

2δ1

+
[(

n
2

)
−m

]
· (n−1−δ1)√

2(n−1−∆1)
.

Proof. Since |E(H)| = m and |V (H)| = n then |V (H)| = n, and |E(H)| =
(
n
2

)
− m.

Accordingly, the minimum and maximum degrees of H are given by δ2 = n − 1 − ∆1

and ∆2 = n− 1− δ1, respectively. Therefore, by employing Theorem 2.1, the result (i) is
evident. Whereas, with the help of Proposition 2.1 for the graph H and its complement H,
one can easily show the other two results. □

Theorem 3.1 ([22]). Let H be a connected graph of order n and size m. Then

n(n− 1)2

2
≤ M1(H) +M1(H) ≤ n(n− 1)2.

Theorem 3.2. Let us consider a connected graph H with order n and size m. Then

(i) n(n−1)2

2
√
2·max {

√
∆1,

√
∆2}

≤ N(H) +N(H) ≤ n(n−1)2−2nδ1δ2√
2·min {

√
δ1,

√
δ2}

,

(ii) n(n−1)2

2
√
2·max {∆3/2

1 ,∆
3/2
2 }

≤ IN1(H) + IN1(H) ≤ n(n−1)2−2nδ1δ2√
2·max {δ3/21 ,δ

3/2
2 }

,
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(iii) min
{

δ1

∆
3/2
1

, δ2

∆
3/2
2

}(
n(n−1)2

4
√
2

)
≤ IN2(H)+IN2(H) ≤ min

{
∆1

δ
3/2
1

, ∆2

δ
3/2
2

}
·
(
n(n−1)2−2nδ1δ2

2
√
2

)
.

Proof. From Theorems 2.3, 3.1 and Equation 1, we have

(i) N(H) +N(H) ≤ M1(H)√
2δ1

+
M1(H)√

2δ2
≤ M1(H) +M1(H)√

2 ·min {
√
δ1,

√
δ2}

≤

[∑
s∈V (H) d

2
H(s) +

∑
s∈V (H) d

2
H
(s)

]
√
2 ·min {

√
δ1,

√
δ2}

=

[∑
s∈V (H)

(
d2H(s) + d2

H
(s)

)]
√
2 ·min {

√
δ1,

√
δ2}

=

∑
s∈V (H)

[(
dH(s) + dH(s)

)2 − 2dH(s)dH(s)
]

√
2 ·min {

√
δ1,

√
δ2}

≤ n(n− 1)2 − 2nδ1δ2√
2 ·min {

√
δ1,

√
δ2}

,

and N(H) +N(H) ≥ M1(H)√
2∆1

+
M1(H)√

2∆2
≥ M1(H) +M1(H)√

2 ·max {
√
∆1,

√
∆2}

≥ n(n− 1)2

2
√
2 ·max {

√
∆1,

√
∆2}

,

(ii) IN1(H) + IN1(H) ≤ M1(H)
√
2δ

3/2
1

+
M1(H)
√
2δ

3/2
2

≤ M1(H) +M1(H)
√
2 ·min {δ3/21 , δ

3/2
2 }

≤ n(n− 1)2 − 2nδ1δ2√
2 ·min {δ3/21 , δ

3/2
2 }

,

and IN1(H) + IN1(H) ≥ M1(H)
√
2∆

3/2
1

+
M1(H)
√
2∆

3/2
2

≥ M1(H) +M1(H)
√
2 ·max {∆3/2

1 ,∆
3/2
2 }

≥ n(n− 1)2

2
√
2 ·max {∆3/2

1 ,∆
3/2
2 }

.

(iii) IN2(H) + IN2(H) ≤ ∆1M1(H)

2
√
2δ1

3/2
+

∆2M1(H)

2
√
2δ

3/2
2

≤ 1

2
√
2
max

{
∆1

δ
3/2
1

,
∆2

δ
3/2
2

}
·
[
M1(H) +M1(H)

]
≤ 1

2
√
2
max

{
∆1

δ
3/2
1

,
∆2

δ
3/2
2

}
·
(
n(n− 1)2 − 2nδ1δ2

)
,

and IN2(H) + IN2(H) ≥ δ1M1(H)

2
√
2∆1

3/2
+

δ2M1(H)

2
√
2∆

3/2
2

≥ 1

2
√
2
min

{
δ1

∆
3/2
1

,
δ2

∆
3/2
2

}
·
[
M1(H) +M1(H)

]
≥ 1

4
√
2
min

{
δ1

∆
3/2
1

,
δ2

∆
3/2
2

}
·
(
n(n− 1)2

)
.

□

Theorem 3.3. Let H be a connected graph of order n and size m. Then
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(i) 1√
2
·min

{√
δ1

∆2
1
,
√
δ2

∆2
2

}
· (n(n− 1)3 − 3n(n− 1)∆1∆2) ≤ N(H) +N(H) ≤ 1√

2

·max
{√

∆1

δ21
,
√
∆2

δ22

}
· (n(n− 1)3 − 3n(n− 1)δ1δ2),

(ii) 1√
2
· (n(n−1)3−3n(n−1)∆1∆2)

max {∆5/2
1 ,∆

5/2
2 }

≤ IN1(H) + IN1(H) ≤ 1√
2
· (n(n−1)3−3n(n−1)δ1δ2)

min {δ5/21 ,δ
5/2
2 }

,

(iii) 1
2
√
2
·min

{√
δ1

∆2
1
,
√
δ2

∆2
2

}
· (n(n− 1)3 − 3n(n− 1)∆1∆2) ≤ IN2(H) + IN2(H)

≤ 1
2
√
2
·max

{√
∆1

δ21
,
√
∆2

δ22

}
· (n(n− 1)3 − 3n(n− 1)δ1δ2).

Proof. From Theorem 2.5 and Equation 3, we have

(i) N(H) +N(H) ≤
√

∆1

2
· F (H)

δ21
+

√
∆2

2
· F (H)

δ22

≤ 1√
2
·max

{√
∆1

δ21
,

√
∆2

δ22

}
·
[
F (H) + F (H)

]
=

1√
2
·max

{√
∆1

δ21
,

√
∆2

δ22

}
·
[ ∑
s∈V (H)

d3H(s) +
∑

s∈V (H)

d3
H
(s)

]

=
1√
2
·max

{√
∆1

δ21
,

√
∆2

δ22

}
·
[ ∑
s∈V (H)

(
d3H(s) + d3

H
(s)

)]
=

1√
2
·max

{√
∆1

δ21
,

√
∆2

δ22

}
·

∑
s∈V (H)

[(
dH(s) + dH(s)

)3 − 3dH(s)dH(s)(dH(s) + dH(s))
]

≤ 1√
2
·max

{√
∆1

δ21
,

√
∆2

δ22

}
· (n(n− 1)3 − 3n(n− 1)δ1δ2),

and N(H) +N(H) ≥
√

δ1
2

· F (H)

∆2
1

+

√
δ2
2

· F (H)

∆2
2

≥ 1√
2
·min

{√
δ1

∆2
1

,

√
δ2

∆2
2

}
·
[
F (H) + F (H)

]
≥ 1√

2
·min

{√
δ1

∆2
1

,

√
δ2

∆2
2

}
· (n(n− 1)3 − 3n(n− 1)∆1∆2).

(ii) IN1(H) + IN1(H) ≤ F (H)
√
2δ

5/2
1

+
F (H)
√
2δ

5/2
2

≤ F (H) + F (H)
√
2 ·min {δ5/21 , δ

5/2
2 }

≤ n(n− 1)3 − 3n(n− 1)δ1δ2√
2 ·min {δ5/21 , δ

5/2
2 }

,

and IN1(H) + IN1(H) ≥ F (H)
√
2∆

5/2
1

+
F (H)
√
2∆

5/2
2

≥ F (H) + F (H)
√
2 ·max {∆5/2

1 ,∆
5/2
2 }

≥ n(n− 1)3 − 3n(n− 1)∆1∆2√
2 ·max {∆5/2

1 ,∆
5/2
2 }

,

(iii) IN2(H) + IN2(H) ≤
√

∆1

2
· F (H)

2δ21
+

√
∆2

2
· F (H)

2δ22
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≤ 1

2
√
2
·max

{√
∆1

δ21
,

√
∆2

δ22

}
·
[
F (H) + F (H)

]
≤ 1

2
√
2
·max

{√
∆1

δ21
,

√
∆2

δ22

}
·
(
n(n− 1)3 − 3n(n− 1)δ1δ2

)
,

and IN2(H) + IN2(H) ≥
√

δ1
2

· F (H)

2∆2
1

+

√
δ2
2

· F (H)

2∆2
2

≥ 1

2
√
2
·min

{√
δ1

∆2
1

,

√
δ2

∆2
2

}
·
[
F (H) + F (H)

]
≥ 1

2
√
2
·min

{√
δ1

∆2
1

,

√
δ2

∆2
2

}
·
(
n(n− 1)3 − 3n(n− 1)∆1∆2

)
.

□

Theorem 3.4 ([20]). Let H be a connected graph of order n and size m. Then

mδ1
√
2+

[(
n

2

)
−m

]
(n−1−∆1)

√
2 ≤ SO(H)+SO(H) ≤ m∆1

√
2+

[(
n

2

)
−m

]
(n−1−δ1)

√
2.

Theorem 3.5. Let us consider a connected graph H with order n and size m. Then

(i) 1

max {
√
∆1,

√
∆2}

·
(
mδ1

√
2+

[(
n
2

)
−m

]
(n−1−∆1)

√
2
)
≤ N(H)+N(H) ≤ 1

max {
√
δ1,

√
δ2}

·(
m∆1

√
2 +

[(
n
2

)
−m

]
(n− 1− δ1)

√
2
)
,

(ii) 1

max {∆3/2
1 ,∆

3/2
2 }

·
(
mδ1

√
2 +

[(
n
2

)
− m

]
(n − 1 − ∆1)

√
2
)

≤ IN1(H) + IN1(H) ≤
1

max {δ3/21 ,δ
3/2
2 }

·
(
m∆1

√
2 +

[(
n
2

)
−m

]
(n− 1− δ1)

√
2
)
,

(iii) min
{√

δ1
2∆1

,
√
δ2

2∆2

}
·
(
mδ1

√
2 +

[(
n
2

)
− m

]
(n − 1 − ∆1)

√
2
)

≤ IN2(H) + IN2(H) ≤

max
{√

∆1
2δ1

,
√
∆2

2δ2

}
·
(
m∆1

√
2 +

[(
n
2

)
−m

]
(n− 1− δ1)

√
2
)
.

Proof. From Theorems 2.10, 2.11 and 3.4, the proofs of the above upper and lower bounds
for the Nirmala indices are immediate as proved in Theorem 3.2. □

Theorem 3.6 ([22]). Let H be a connected graph of order n and size m. Then

n(n− 1)

2(n− 2)
≤ R(H) +R(H) ≤ n.

Theorem 3.7. Let us consider a connected graph H with order n and size m. Then

(i)
√
2min

{
δ
3/2
1 , δ

3/2
2

}
· n(n−1)
2(n−2) ≤ N(H) +N(H) ≤

√
2min

{
∆

3/2
1 ,∆

3/2
2

}
· n,

(ii) min
{√

2δ1,
√
2δ2

}
· n(n−1)
2(n−2) ≤ IN1(H) + IN1(H) ≤ max

{√
2∆1,

√
2∆2

}
· n,

(iii) min
{

δ21√
2∆1

,
δ22√
2∆2

}
· n(n−1)
2(n−2) ≤ IN2(H) + IN2(H) ≤ max

{
∆2

1√
2δ1

,
∆2

2√
2δ2

}
· n.

Proof. The proof of the above upper bound and lower bound for the Nirmala indices can
be proved similar to Theorem 3.2 by using Theorems 2.6 and 3.6. □

4. Conclusion

In this current study, in the first place, some bounds of the Nirmala indices (Nirmala
index, first inverse Nirmala index and second inverse Nirmala index) in terms of some graph
invariants were substantiated and mathematical inequalities among the Nirmala indices
were established. Later, the bounds of the Nirmala indices in terms of several standard
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degree-based topological indices were proposed. Furthermore, Nordhaus-Gaddum-type
inequalities for the combination of the Nirmala indices of a graph and its complement
were presented with the help of previously deduced relations.
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