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CONTINUITY AND BOUNDEDNESS OF LINEAR OPERATORS ON

NEUTROSOPHIC 2-NORMED SPACES
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Abstract. In present work, we aim to introduce certain concepts of continuity that is
weak, strong and sequentially continuity of linear operators defined on neutrosophic 2-
normed spaces. We provide an example that shows sequential continuous linear operators
may not be strongly continuous on these spaces. Later, we define weakly and strongly
boundedness of an operator on neutrosophic 2-normed spaces and study some relevant
connections between continuity and boundedness.
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1. Introduction

In our real life there exist some classes such as the class of beautiful women, the class of
intelligent students and the class of tall persons which cannot be fit in the framework of
crisp sets. Therefore to explore these type of phenomena’s, Zadeh [33] introduced the idea
of fuzzy sets by defining the degree of a membership function. Later, the theory of fuzzy
sets has grown up along with time and many fuzzy analogues of classical concepts have
came into existence. One among these is the fuzzy topology which has wide applications
in quantum physics (see [11], [12] and [13]). While studying fuzzy topological space in
1984, Katsaras [19] introduced the concepts of fuzzy semi norm, fuzzy norm and studied
some properties of fuzzy semi normed and fuzzy normed spaces. Xiao and Zhu [32] define
a fuzzy norm of a linear operator and studied the space of all bounded linear operators
endowed with this fuzzy norm. Subsequently, Bag and Samanta [5-6] introduced strong
and weak boundedness of fuzzy bounded linear operators and studied their relations with
fuzzy continuity. For more information in this direction, we refer to the reader [7] and [8].

Atanassov [2-4] first observed that the Zadeh’s idea of fuzzy sets is not sufficient to
work on some problems and therefore he generalized it by joining the non-membership
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function along with a membership function. He called it as intutionistic fuzzy set. These
sets are further used to define intutionistic topological spaces, intutionistic normed spaces
and intutionistic fuzzy 2-normed spaces. For a wide view on these spaces, we quote [14],
[18], [17] [9], [10], [22] and [26].

There are situations which are partially true, partially false and partially indeterminacy
(neither true nor false) which cannot be modeled by intutionistic fuzzy sets. So, in view
of this, Smarandache [30-31] generalized the intutionistic fuzzy sets and define the neutro-
sophic set by adding the indeterminacy function to the membership and non-membership
function. Recently, Kirişci and Şimşek [20] used neutrosophic sets to define neutrosophic
normed spaces and studied statistical convergence in these spaces. For some further works
on neutrosophic normed spaces, we refer to [27], [16], [21],[23-25], [28] and [29]. In present
study, we consider neutrosophic normed spaces and define certain kinds of continuity and
boundedness of an operator over neutrosophic 2-normed spaces. We shall also study some
interesting relationships among these notions.

2. Preliminaries

This section begins by recalling some definitions and results in concern of present study.
For any set S, the neutrosophic setA of S is defined byA = {(s,GA(s), BA(s), YA(s))}s ∈

S}, where the functions GA : S → [0, 1] and BA : S → [0, 1], YA : S → [0, 1] respectively
denote the degree of membership function, indeterminacy function and non-membership
function of the element of s ∈ S and for every s ∈ S, 0 ≤ G(s) +B(s) + Y (s) ≤ 1.
Definition 2.1 [1] Let I = [0, 1]. A function ◦ : I × I → I is said to be a t−norm for all
f, g, h, i ∈ I we have:

(i) f ◦ g = g ◦ f ;
(ii)f ◦ (g ◦ h) = (f ◦ g) ◦ h;
(iii) ◦ is continuous;
(iv) f ◦ 1 = f for every f ∈ [0, 1] and
(v) f ◦ g ≤ h ◦ i whenever f ≤ h and g ≤ i.

Definition 2.2 [1] Let I = [0, 1]. A function ⋄ : I × I → I is said to be a continuous
triangular conorm or t−conorm for all f, g, h, i ∈ I we have:

(i) f ⋄ g = g ⋄ f ;
(ii)f ⋄ (g ⋄ h) = (f ⋄ g) ◦ h;
(iii) ⋄ is continuous;
(iv) f ⋄ 0 = f for every f ∈ [0, 1]
(v) f ⋄ g ≤ h ⋄ i whenever f ≤ h and g ≤ i.
We now recall the concept of 2-norm given in [15].

Definition 2.3 Let F be a d−dimensional real vector space, where 2 ≤ d < ∞. A 2−norm
on F is a function ∥., .∥ : F × F → R fulfilling the below listed requirements:

For all p, q ∈ F , and scalar α, we have
(i) ∥p, q∥ = 0 iff p and q are linearly dependent;
(ii) ∥p, q∥ = ∥p, q∥;
(iii)∥αp, q∥ = ||α||∥p, q∥ and
(iv) ∥p, q + r∥ ≤ ∥p, q∥+ ∥p, r∥.
The pair (F, ∥., .∥) is known as 2−normed space in this case.
Let F = R2 and for p = (p1, p2) and q = (q1, q2) we define ∥p, q∥ = |p1q2 − p2q1|, then

∥p, q∥ is a 2− norm on F = R2.
Kirişci and Şimşek [20] recently defined neutrosophic normed space where as the concept

has been extanded for neutrosophic-2-normed linear spaces (briefly abbreviated as N −
2−NS) in [21] as follows.
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Definition 2.4 A six-tuple V = (F,G,B, Y, ◦, ⋄) where F is a vector space, ◦ is a t−norm,
⋄ is a t−conorm andG,B, Y are fuzzy sets on F 2×[0, 1] (G is the membership function, B is
the indeterminacy function and Y is the non-membership function) is called a neutrosophic
2−norm space (briefly N−2−NS) if for every p, q, w ∈ V , ρ, µ ≥ 0 and ς ̸= 0 the following
conditions are satisfied.

(i) 0 ≤ G(p, q; ρ) ≤ 1, 0 ≤ B(p, q; ρ) ≤ 1 and 0 ≤ Y (p, q; ρ) ≤ 1 for every ρ ∈ R+;
(ii) 0 ≤ G(p, q; ρ) +B(p, q; ρ) + Y (p, q; ρ) ≤ 3;
(iii) G(p, q; ρ) = 1 iff p, q are linearly dependent;
(iv) G(ςp, q; ρ) = G(p, q; ρ

|ς|) for each ς ̸= 0;

(v) G(p, q; ρ) ◦G(p, w;µ) ≤ G(p, q + w; ρ+ µ);
(vi) G(p, q; .) : [0,∞) → [0, 1] is a non-decreasing function that runs continuously;
(vii) lim

ρ→∞
G(p, q; ρ) = 1 ;

(viii) G(p, q; ρ) = G(q, p; ρ)
(ix) B(p, q; ρ) = 0 iff p, q are linearly dependent;
(x) B(ςp, q; ρ) = B(p, q; ρ

|ς|) for each ς ̸= 0;

(xi) B(p, q; ρ) ⋄B(p, w;µ) ≥ B(p, q + w; ρ+ µ);
(xii) B(p, q; .) : [0,∞) → [0, 1] is a non-increasing function that runs continuously;
(xiii) lim

ρ→∞
B(p, q; ρ) = 0 ;

(xiv) B(p, q; ρ) = B(q, p; ρ)
(xvi) Y (p, q; ρ) = 0 iff p, q are linearly dependent;
(xv)Y (ςp, q; ρ) = Y (p, q; ρ

|ς|) for each ς ̸= 0;

(xvi) Y (p, q; ρ) ⋄ Y (p, w;µ) ≥ Y (p, q + w; ρ+ µ);
(xvii) Y (p, q; .) : [0,∞) → [0, 1] is a non-increasing function that runs continuously;
(xviii) lim

ρ→∞
Y (p, q; ρ) = 0 ;

(xix) Y (p, q; ρ) = Y (q, p; ρ)
(xx) if ρ ≤ 0, then G(p, q; ρ) = 0, B(p, q; ρ) = 1, Y (p, q; ρ) = 1.

In this case, we call N2(G,B, Y ) a neutrosophic 2−norm on F .
We next give the notions of convergence in neutrosophic 2-norm space.

Definition 2.5 [21] Let V be a N − 2 −NS. Choose 0 < ϵ < 1 and ρ > 0. A sequence
(vk) in a V is said to be convergent if ∃ a positive integer m and v0 ∈ F s.t. G(vk −
v0, w; ρ) > 1 − ϵ and B(vk − v0, w; ρ) < ϵ, Y (vk − v0, w; ρ) < ϵ for all k ≥ m and w ∈ V .
This is equivalently to say limk→∞G(vk − v0, w; ρ) = 1, limk→∞B (vk − v0, w; ρ) = 0 and
limk→∞ Y (vk − v0, w; ρ) = 0 . In this case, we write N2(G,B, Y )− limk→∞ vk = v0.

3. Main Results

Let, U = (X,G1, B1, Y1, ◦1, ⋄1) and V = (Y,G2, B2, Y2, ◦2, ⋄2) be two neutrosophic 2-
normed spaces, where X and Y are linear space over R.
Definition 3.1 A mapping T : U → V is said to be neutrosophic continuous at u0 =(
u10, u

2
0

)
∈ X2 if for ϵ > 0 and η > 0 (0 < η < 1), ∃ δ = δ(η, ϵ) > 0 and ξ = ξ(η, ϵ) > 0 s.t,

∀ u = (u1, u2) ∈ X2 we have

G1

(
(u1, u2)−

(
u01, u

0
2

)
, δ

)
> ξ and B1

(
(u1, u2)−

(
u01, u

0
2

)
, δ

)
< 1− ξ,

Y1

(
(u1, u2)− (u01, u

0
2), δ

)
< 1− ξ,
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⇒

G2

(
T (u1, u2)− T

(
u01, u

0
2

)
, ϵ

)
> η and B2

(
T (u1, u2)−

(
u01, u

0
2

)
, ϵ

)
< 1− η,

Y2

(
T (u1, u2)− (u01, u

0
2), ϵ

)
< 1− η.

This is equivalent to say that for ϵ > 0 and η > 0 (0 < η < 1), ∃ δ = δ(η, ϵ) > 0 and
ξ = ξ(η, ϵ) > 0 s.t ∀ u = (u1, u2) ∈ X2.

G1(u− u0, δ) > ξ and B1(u− u0, δ) < 1− ξ, Y1(u− u0, δ) < 1− ξ,

⇒ G2

(
T (u)− T (u0), ϵ

)
> η and B2

(
T (u)− T (u0), ϵ

)
< 1− η,

Y2

(
T (u)− T (u0), ϵ

)
< 1− η.

T : U → V is said to be neutrosophic continuous on U if T is neutrosophic continuous at
each point of X2.

Definition 3.2 A map T : U → V is said to be strongly neutrosophic continuous at
u0 =

(
u01, u

0
2

)
∈ X2 if for ϵ > 0, ∃ δ > 0 s.t ∀ u = (u1, u2) ∈ X2

G2

(
T (u)− T (u0), ϵ

)
≥ G1(u− u0, δ) and

B2

(
T (u)− T (u0), ϵ

)
≤ B1(u− u0, δ),

Y2
(
T (u)− T (u0), ϵ

)
≤ Y1(u− u0, δ).

T : U → V is said to be strongly neutrosophic continuous on U if T is strongly neutrosophic
continuous at each point of X2.
Definition 3.3 A map T : U → V is said to be weakly neutrosophic continuous at
u0 = (u01, u

0
2) ∈ X2 if for ϵ > 0 and η ∈ (0, 1), ∃ δ = (η, ϵ) > 0 s.t ∀ u = (u1, u2) ∈ X2,

G1(u− u0, δ) ≥ η and B1(u− u0, δ) ≤ 1− η, Y1(u− u0, δ) ≤ 1− η

⇒ G2(T (u)− T (u0), ϵ) ≥ η and B2(T (u)− T (u0), ϵ) ≤ 1− η,

Y2(T (u)− T (u0), ϵ) ≤ 1− η.

We say T : U → V weakly neutrosophic continuous on U if T is weakly neutrosophic
continuous at each point of X2.
Definition 3.4 A map T : U → V is said to be sequentially neutrosophic continuous at
u0 = (u01, u

0
2) ∈ X2 if for any sequence (uk) with uk → u0 implies T (uk) → T (u0) i.e, for

all r > 0

lim
k→∞

G1(uk − u0, r) = 1 and lim
k→∞

B1(uk − u0, r) = 0, lim
k→∞

Y1(uk − u0, r) = 0,

⇒ lim
k→∞

G2(T (uk)− T (u0), r) = 1 and lim
k→∞

B2(T (uk)− T (u0), r) = 0,

lim
k→∞

Y2(T (uk)− T (u0), r) = 0.

T : U → V is said to be sequentially neutrosophic continuous on U if T is sequentially
neutrosophic continuous at each point of X2.
Theorem 3.1 If a map T : U → V is strongly neutrosophic continuous then it is sequen-
tially neutrosophic continuous.
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Proof Let T : U → V be strongly neutrosophic continuous. We shall show that T is se-
quentially neutrosophic continuous. Let u0 = (u01, u

0
2) ∈ X2 be any point. Since T : U → V

is strongly neutrosophic continuous so for each ϵ > 0, ∃ δ > 0 s.t ∀ u = (u1, u2) ∈ X2

G2(T (u)− T (u0), ϵ) ≥ G1(u− u0, δ) and B2(T (u)− T (u0), ϵ) ≤ B1(u− u0, δ),

Y2(T (u)− T (u0), ϵ) ≤ Y1(u− u0, δ)
(1)

Let (uk) be any sequence in U s.t uk → u0 w.r.t N1(G1, B1, Y1), then

lim
k→∞

G1(uk − u0, r) = 1 and lim
k→∞

B1(uk − u0, r) = lim
k→∞

Y1(uk − u0, r) = 0. (2)

Now, by (3)

G2(T (uk)− T (u0), ϵ) ≥ G1(uk − u0, δ) and B2(T (uk)− T (u0), ϵ) ≤ B1(uk − u0, δ),

Y2(T (uk)− T (u0), ϵ) ≤ Y1(uk − u0, δ)

and therefore,
lim
k→∞

G2(T (uk)− T (u0), ϵ) ≥ lim
k→∞

G1(uk − u0, δ) = 1 by (4).

This gives lim
k→∞

G2(T (uk)− T (u0), ϵ) = 1.

Further,
lim
k→∞

B2(T (uk)− T (u0), ϵ) ≤ lim
k→∞

B1(uk − u0, δ) = 0 and

lim
k→∞

Y2(T (uk)− T (u0), ϵ) ≤ lim
k→∞

Y1(uk − u0, δ) = 0.

This shows that T (uk) → T (u0) w.r.t N2(G2, B2, Y2) and therefore T is sequentially neu-
trosophic continuous. □
The converse of above result is not true in general as can be seen from the following ex-
ample.
Example 3.1 Let (X, ∥.∥2) be a 2-normed space. Define the t−norm, t−conorm, G1, G2, B1,
B2,& Y1, Y2 by
a ◦ b = min{a, b}, a ⋄ b = max{a, b} for a, b ∈ [0, 1];

G1(u1, u2, δ) =
δ

δ + ∥(u1, u2)∥2
, B1(u1, u2, δ) =

∥(u1, u2)∥2
δ + ∥(u1, u2)∥2

Y1(u1, u2, δ) =
∥(u1, u2)∥2

δ
;

G2(u1, u2, ϵ) =
ϵ

ϵ+ α∥(u1, u2)∥2
, B2(u1, u2, ϵ) =

α∥(u1, u2)∥2
ϵ+ α∥u1, u2∥2

Y2(u1, u2, ϵ) =
α∥(u1, u2)∥2

ϵ

where ϵ > 0, ∃ δ > 0, α > 0, and u = (u1, u2) ∈ X2, then U = (X2, G1, B1, Y1, ◦, ⋄), V =
(X2, G2, B2, Y2, ◦, ⋄) are neutrosophic 2-normed linear spaces. Define a map T : U → V by

T (u) =
u4

1 + u2
where u = (u1, u2) ∈ X2. We first show that T is sequentially neutrosophic

continuous. Let u0 ∈ U and (uk) be any sequence in U s.t (uk) → u0 w.r.t N1(G1, B1, Y1).
Then for any δ > 0, we have

lim
k→∞

G1(uk − u0, δ) = 1 and lim
k→∞

B1(uk − u0, δ) = lim
k→∞

Y1(uk − u0, δ) = 0.

⇒ lim
k→∞

δ

δ + ∥uk − u0∥2
= 1 and lim

k→∞

∥uk − u0∥2
δ + ∥uk − u0∥2

= lim
k→∞

∥uk − u0∥2
δ

= 0,

and therefore we have
lim
k→∞

∥uk − u0∥2 = 0. (3)



142 TWMS J. APP. ENG. MATH. V.15, N.1, 2025

Now consider, G2(T (uk)− T (u0), ϵ) =
ϵ

ϵ+ α∥(T (uk)− T (u0)∥2
=

ϵ

ϵ+ α

∥∥∥∥ u4
k

1+u2
k
− u4

0

1+u2
0

∥∥∥∥
2

=
ϵ∥1 + u2k∥2 ∥1 + u20∥2

ϵ∥1 + u2k∥2 ∥1 + u20∥2 + α

∥∥∥∥(u4k(1 + u20)− u40(1 + u2k)

)∥∥∥∥
2

=
ϵ∥1 + u2k∥2 ∥1 + u20∥2

ϵ∥1 + u2k∥2 ∥1 + u20∥2 + α∥u4k + u4ku
2
0 − u40 − u40u

2
k∥2

=
ϵ∥1 + u2k∥2 ∥1 + u20∥2

ϵ∥1 + u2k∥2 ∥1 + u20∥2 + α∥(uk − u0)(uk + u0)(u2k + u20) + u2ku
2
0(u

2
k − u20)∥2

=
ϵ∥1 + u2k∥2 ∥1 + u20∥2

ϵ∥1 + u2k∥2 ∥1 + u20∥2 + α∥uk − u0∥2 ∥(uk + u0)(u2k + u20) + u2ku
2
0(uk + u0)∥2

,

and therefore lim
k→∞

G2(T (uk)− T (u0), ϵ) = 1. by(5)

Further,

B2(T (uk)− T (u0), ϵ) =

α

∥∥∥∥ u4
k

1+u2
k
− u4

0

1+u2
0

∥∥∥∥
2

ϵ+ α

∥∥∥∥ u4
k

1+u2
k
− u4

0

1+u2
0

∥∥∥∥
2

=
α∥u4k(1 + u20)− u40(1 + u2k)∥2

ϵ∥1 + u2k∥2 ∥1 + u20∥2 + α∥u4k(1 + u20)− u40(1 + u2k)∥2

=
α∥u4k − u40 + u4ku

2
0 − u40u

2
k∥2

ϵ∥1 + u2k∥2 ∥1 + u20∥2 + α∥u4k − u40 + u4ku
2
0 − u40u

2
k∥2

=
α∥(uk − u0)(uk + u0)(u

2
k + u20) + u2ku

2
0(u

2
k − u20)∥2

ϵ∥1 + u2k∥2 ∥1 + u20∥2 + α∥(uk − u0)(uk + u0)(u2k + u20) + u2ku
2
0(u

2
k − u20)∥2

=
α∥uk − u0∥2 ∥(uk + u0)(u

2
k + u20) + u2ku

2
0(uk + u0)∥2

ϵ∥1 + u2k∥2 ∥1 + u20∥2 + α∥uk − u0∥2 ∥(uk + u0)(u2k + u20) + u2ku
2
0(uk + u0)∥2

and therefore lim
k→∞

B2(T (uK)− T (u0), ϵ) = 0. by(5)

Similarly, we have lim
k→∞

Y2(T (uK) − T (u0), ϵ) = 0, and therefore T (uk) → T (u0) w.r.t

N2(G2, B2, Y2). This shows that T is sequentially neutrosophic continuous on U . We claim
that T is not strongly neutrosophic continuous on U . Suppose that T is strongly continuous
on U . Let ϵ > 0 be given and u0 = (u01, u

0
2) ∈ X2. Since T is strongly neutrosophic

continuous so ∃ δ > 0 s.t ∀ u = (u1, u2) ∈ X2. G2(T (u)− T (u0), ϵ) ≥ G1(u− u0, δ)

⇒ ϵ∥1 + u2∥2 ∥1 + u20∥2
ϵ∥1 + u2∥2 ∥1 + u20∥2 + α∥u− u0∥2 ∥(u+ u0)(u2 + u20) + u2u20(u+ u0)∥2

≥ δ

δ + ∥u− u0∥2
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and
B2(T (u)− T (u0), ϵ) ≤ B1(u− u0, δ)

⇒ α∥u− u0∥2 ∥(u2 + u20) + u2u20(u+ u0)∥2
ϵ ∥1 + u2∥2 ∥1 + u20∥2 + α∥u− u0∥2 ∥(u+ u0)(u2 + u20) + u2u20(u+ u0)∥2

≤ ∥u− u0∥2
δ + ∥u− u0∥2

αδ∥u− u0∥2 ∥u+ u0∥2 ∥u2 + u20 + u2u20∥2 + α∥u− u0∥2 ∥u+ u0∥2 ∥u2 + u20 + u2u20∥2
≤ ϵ∥1 + u2∥2 ∥1 + u20∥2∥u− u0∥2 + α∥u− u0∥2 ∥u+ u0∥2 ∥u2 + u20 + u2u20∥2

⇒ αδ∥u− u0∥2∥u+ u0∥2 ∥u2 + u20 + u2u20∥2 ≤ ϵ∥1 + u2∥2 ∥1 + u20∥2 ∥u− u0∥2

⇒ δ ≤ ϵ∥1 + u2∥2∥1 + u20∥2 ∥u− u0∥2
α∥u− u0∥2 ∥u+ u0∥2 ∥u2 + u20 + u2u20∥2

=
ϵ∥1 + u2∥2∥1 + u20∥2

α∥u+ u0∥2 ∥u2 + u20 + u2u20∥2
. (4)

Y2(T (u)− T (u0), ϵ) ≤ Y1(u− u0, δ)

⇒ α∥T (u)− T (u0)∥2
ϵ

≤ ∥u− u0∥2
δ

⇒ α

∥∥∥∥ u4

1 + u2
− u40

1 + u20

∥∥∥∥
2

≤ ϵ

δ
∥u− u0∥2

⇒ α∥u4(1 + u20)− u40(1 + u2)∥2
∥1 + u2∥2 ∥1 + u20∥2

≤ ϵ

δ
∥u− u0∥2

⇒ δα∥u4 − u40 + u4u20 − u40u
2∥2

≤ ϵ∥u− u0∥2 ∥1 + u2o∥2 ∥1 + u2∥2
⇒ δα∥(u2 − u20)(u

2 + u20) + u2u20(u
2 − u20)∥2

≤ ϵ∥u− u0∥2 ∥1 + u2o∥2 ∥1 + u2∥2
⇒ δα∥u− u0∥2 ∥u+ u0∥2 ∥u2 + u20 + u2u20∥2

≤ ϵ∥u− u0∥2 ∥1 + u2o∥2 ∥1 + u2∥2

⇒ δ ≤ ϵ

α

∥1 + u20∥2 ∥1 + u2∥2
∥u+ u0∥2 ∥u2 + u20 + u2u20∥2

.

Hence, in all cases

⇒ δ ≤ ϵ

α

∥1 + u20∥2 ∥1 + u2∥2
∥u+ u0∥2 ∥u2 + u20 + u2u20∥2

.

Let,

δ∗ = inf
u

u̸=u0

∥1 + u20∥2 ∥1 + u2∥2
∥u+ u0∥2 ∥u2 + u20 + u2u20∥2

,

then δ = ϵ
αδ

∗. But δ∗ = 0 which is not possible. Hence, T is not strongly neutrosophic
continuous on U . □
Theorem 3.2 A map T : U → V is neutrosophic continuous if and only if T is sequentially
neutrosophic continuous on U .
Proof Suppose T : U → V is neutrosophic continuous on U . We shall prove that T is
sequentially neutrosophic continuous. Let u0 ∈ U be any element and u = (uk) be any
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sequence in U converging to u0 w.r.t N1(G1, B1, Y1) i.e. N1(G1, B1, Y1) − lim
k→∞

uk = u0.

Let ϵ > 0 and 0 < η < 1.
Since, T : U → V is neutrosophic continuous at u0 so ∃ δ = δ(η, ϵ) > 0 and ξ = ξ(η, ϵ) > 0
s.t for all u = (u1, u2) ∈ X2 satisfying

G1(u− u0, δ) > ξ and B1(u− u0, δ) < 1− ξ, Y1(u− u0, δ) < 1− ξ,

we have

G2(T (u)− T (u0), ϵ) > η and

B2(T (u)− T (u0), ϵ) < 1− η, Y2(T (u)− T (u0), ϵ) < 1− η.
(5)

Since N1(G1, B1, Y1)− lim
k→∞

uk = u0, so ∃ k1 ∈ N s.t for all k ≥ k1, we have

G1(uk − u0, δ) > ξ and B1(uk − u0, δ) < 1− ξ, Y1(uk − u0, δ) < 1− ξ.

so by (5) we have for all k ≥ k1

G2(T (uk)− T (u0), ϵ) > η and

B2(T (uk)− T (u0), ϵ) < 1− η, Y2(T (uk)− T (u0), ϵ) < 1− η.

This show that T (uk) → T (u0) w.r.t N2(G2, B2, Y2) and therefore T is sequentially neu-
trosophic continuous on U as u0 was selected arbitrary.
Conversely, suppose that T : U → V is sequentially neutrosophic continuous on U . We
shall prove that T is neutrosophic continuous on U . Suppose that T is not neutrosophic
continuous on U . Then ∃ u0 ∈ U s.t T is not neutrosophic continuous at u0. Then
∃ ϵ > 0 and η > 0 s.t for any δ > 0 & 0 < ξ < 1 there exists u

′ ∈ X2 s.t

G1(u0 − u
′
, δ) > ξ and B1(u0 − u

′
, δ) < 1− ξ, Y1(u0 − u

′
, δ) < 1− ξ,

we have

G2(T (u0)− T (u
′
), ϵ) ≤ η and

B2(T (u0)− T (u
′
), ϵ) ≥ 1− η, Y2(T (u0)− T (u

′
), ϵ) ≥ 1− η.

(6)

If we select ξ = 1− 1
k+1 and δ = 1

k+1 , k = 1, 2, 3, . . ., then we have a sequence (u
′
k) s.t

G1

(
u0 − u

′
k,

1

k + 1

)
> 1− 1

k + 1
and

B1

(
u0 − u

′
k,

1

k + 1

)
<

1

k + 1
, Y1

(
u0 − u

′
k,

1

k + 1

)
<

1

k + 1
,

(7)

but

G2(T (u0)− T (u
′
), ϵ) ≤ η and

B2(T (u0)− T (u
′
), ϵ) ≥ 1− η, Y2(T (u0)− T (u

′
), ϵ) ≥ 1− η.

Further, for δ > 0, we can choose k1 ∈ N s.t for all k ≥ k1 we have 1
k+1 < δ.

Now,

G1(u0 − u
′
k, δ) ≥ G1

(
u0 − u

′
k,

1

k + 1

)
> 1− 1

k + 1
and

B1(u0 − u
′
k, δ) ≤ B1

(
u0 − u

′
k,

1

k + 1

)
<

1

k + 1
,

Y1(u0 − u
′
k, δ) ≤ Y1

(
u0 − u

′
k,

1

k + 1

)
<

1

k + 1
. using (7)
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will imply

lim
k→∞

G1 (u0 − u
′
k, δ) = 1 and lim

k→∞
B1 (u0 − u

′
k, δ) = lim

k→∞
Y1 (u0 − u

′
k, δ) = 0.

Thus show that (u
′
k) → u0 w.r.t N1(G1, B1, Y1).

Now by (6)

G2(T (u0)− T (u
′
k), ϵ) ≤ η and

B2(T (u0)− T (u
′
k), ϵ) ≥ 1− η, Y2(T (u0)− T (u

′
k), ϵ) ≥ 1− η.

⇒ lim
k→∞

G2(T (u0)− T (u
′
k), ϵ) ̸= 1 and

lim
k→∞

B2(T (u0)− T (u
′
k), ϵ) ̸= 0, lim

k→∞
Y2(T (u0)− T (u

′
k), ϵ) ̸= 0

and so T (u
′
k) ↛ T (u0) w.r.t N2(G2, B2, Y2). This show that T is not sequentially con-

tinuous as (u
′
k) → u0 w.r.t N1(G1, B1, Y1) thus, we obtain a contradiction therefore T is

neutrosophic continuous on U . □

4. Neutrosophic bounded linear Operators

In this section, we define neutrosophic weak and strong boundedness of a linear operator
and study some relevant connections.
Definition 4.1 A linear operator T : U → V is said to be strongly neutrosophic bounded
on U if and only if ∃ M > 0 s.t for all u ∈ U and η > 0

G2(T (u), η) ≥ G1

(
u,

η

M

)
and B2(T (u), η) ≤ B1

(
u,

η

M

)
,

Y2(T (u), η) ≤ Y1

(
u,

η

M

)
.

Example 4.1 Let (X, ∥.∥2) be a 2-normed linear space. Define G1, G2, B1, B2 and Y1, Y2
as follows.

G1(u1, u2, η) =

{
η

η+α1∥u1,u2∥2 if η > 0

0 if η ≤ 0 ;

B1(u1, u2, η) =

{
α1∥u1,u2∥2

η+α1∥u1,u2∥2 if η > 0

0 if η ≤ 0 ;
Y1(u1, u2, η) =

{
α1∥u1,u2∥2

η if η > 0

0 if η ≤ 0 ;

and

G2(u1, u2, η) =

{
η

η+α2∥u1,u2∥2 if η > 0

0 if η ≤ 0 ;

B2(u1, u2, η) =

{
α2∥u1,u2∥2

η+α1∥u1,u2∥2 if η > 0

0 if η ≤ 0 ;
Y2(u1, u2, η) =

{
α2∥u1,u2∥2

η if η > 0

0 if η ≤ 0 ;

if η > 0 andG1, G2, B1, B2 and Y1, Y2 are defined to be zero of η ≤ 0, where α1 and α2 are
fixed positive real numbers and α1 > α2. It is clear that (X,G1, B1, Y1, ◦, ⋄) and (X,G2, B2,
Y2, ◦, ⋄) become N − 2NLS. Define an operator T : (X,G1) → (X,G2) by T (u) = lu,
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where u = (u1, u2) ∈ X2, where l ̸= 0 ∈ R is fixed, then it is easy to see that T is a linear
operator. Choose M s.t M ≥ |l|. Then we have

G2(T (u1, u2), η) ≥ G1

(
u1, u2,

η

M

)
∀ (u1, u2) ∈ X,∀ η ∈ R, (8)

Since, u = (u1, u2) ∈ U, M ≥ |l| we have, α1M ≥ α2|l| since (α1 > α2 > 0)

⇒ α1M∥u1, u2∥2 ≥ α2|l|∥u1, u2∥2
⇒ η + α1M∥u1, u2∥2 ≥ η + α2|l|∥u1, u2∥2 ∀ η > 0

⇒ 1

η + α2|l|∥u1, u2∥2
≥ 1

η + α1M∥u1, u2∥2
⇒ η

η + α2∥lu1, u2∥2
≥ η

η + α1M∥u1, u2∥2

⇒ η

η + α2∥lu1, u2∥2
≥

η
M

η
M + α1∥u1, u2∥2

G2(T (u1, u2), η) ≥ G1

(
u1, u2,

η

M

)
∀ η > 0 and u = (u1, u2) ∈ X.

Further,

α2|l| ≤ α1M ⇒ α2|l|η ≤ α1Mη

⇒ α2|l|η + α1α2M |l|∥u1, u2∥2 ≤ α1Mη + α1α2M |l|∥u1, u2∥2
⇒ α2|l|(η + α1M∥u1, u2∥2) ≤ α1M(η + α2|l|∥u1, u2∥2)

⇒ α2|l|
η + α2|l|∥u1, u2∥2

≤ α1M

η + α1M∥u1, u2∥2

⇒ α2|l|∥u1, u2∥2
η + α2|l|∥u1, u2∥2

≤ α1M∥u1, u2∥2
η + α1M∥u1, u2∥2

⇒ α2∥lu1, u2∥2
η + α2∥lu1, u2∥2

≤ α1∥u1, u2∥2
η
M + α1∥u1, u2∥2

B2(T (u1, u2), η) ≤ B1

(
u1, u2,

η

M

)
∀ u = (u1, u2) ∈ X,∀ η ∈ R,

Similarly,

Y2(T (u1, u2), η) ≤ Y1

(
u1, u2,

η

M

)
∀ u = (u1, u2) ∈ X,∀ η ∈ R.

This shows that the operator T is strongly neutrosophic bounded.

Definition 4.2 A linear operator T : U → V is said to be weakly neutrosophic bounded
on U if for any η, 0 < η < 1, ∃ Mη > 0 s.t ∀u ∈ U and ξ > 0

G1

(
u,

ξ

Mη

)
≥ η and B1

(
u,

ξ

Mη

)
≤ 1− η, Y1

(
u,

ξ

Mη

)
≤ 1− η.

⇒ G2(T (u), ξ) ≥ η and B2(T (u), ξ) ≤ 1− η, Y2(T (u), ξ) ≤ 1− η.

Example 4.2 Let (X, ∥.∥2) be a 2-normed space. Define a ◦ b = min{a, b}, a ⋄ b =
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max{a, b} for a, b ∈ [0, 1];

G1(u1, u2, ξ) =

{
ξ2−(∥u1,u2∥2)2
ξ2+(∥u1,u2∥2)2 if ξ > ∥u1, u2∥
0 if ξ ≤ ∥u1, u2∥ ;

B1(u1, u2, ξ) =

{
2(∥u1,u2∥2)2

ξ2+(∥u1,u2∥2)2 if ξ > ∥u1, u2∥
0 if ξ ≤ ∥u1, u2∥ ;

Y1(u1, u2, ξ) =

{
2(∥u1,u2∥2)2

ξ2
if ξ > ∥u1, u2∥

0 if ξ ≤ ∥u1, u2∥ ;
and

G2(u1, u2, ξ) =

{
ξ

ξ+∥u1,u2∥2 if ξ > 0, ∀ u1, u2 ∈ X

0 if ξ ≤ 0, ∀ u1, u2 ∈ X ;

B2(u1, u2, ξ) =

{
∥u1,u2∥2

ξ+∥u1,u2∥2 if ξ > 0,∀ u1, u2 ∈ X

0 if ξ ≤ 0,∀ u1, u2 ∈ X ;

Y2(u1, u2, ξ) =

{
∥u1,u2∥2

ξ if ξ > 0,∀ u1, u2 ∈ X

0 if ξ ≤ 0,∀ u1, u2 ∈ X ;

If ξ > 0 and G1, G2, B1, B2, Y1 and Y2 are said to be zero for ξ ≤ 0. Then it easy to see
that U = (X2, G1, B1, Y1, ◦, ⋄) and V = (X2, G2, B2, Y2, ◦, ⋄) are N − 2NLS.

Define an operator T : U → V by T (u) = u where u = (u1, u2) ∈ X2. If we choose
Mη = 1

1−η ∀ η ∈ (0, 1), then for ξ > ∥u1, u2∥2 we have

G1

(
u1, u2,

ξ

Mη

)
≥ η ⇒ ξ2(1− η)2 − (∥u1, u2∥2)2

ξ2(1− η)2 + (∥u1, u2∥2)2
≥ η

ξ2(1− η)2 − (∥u1, u2∥2)2 ≥ ηξ2(1− η)2 + η(∥u1, u2∥2)2

⇒ ξ2(1− η)2 − ηξ2(1− η)2 ≥ (∥u1, u2∥2)2 + η(∥u1, u2∥2)2

⇒ ξ2(1− η)2(1− η) ≥ (1 + η)(∥u1, u2∥2)2

⇒ ξ2(1− η)3 ≥ (1 + η)(∥u1, u2∥2)2 ⇒ ξ2(1− η)3

(1 + η)
≥ (∥u1, u2∥2)2

⇒ (∥u1, u2∥2)2 ≤
ξ2(1− η)3

(1 + η)
⇒ ∥u1, u2∥2 ≤

ξ(1− η)
3
2

(1 + η)
1
2

⇒ ∥u1, u2∥2 ≤
ξ(1− η)(1− η)

1
2

(1 + η)
1
2

⇒ ξ + ∥u1, u2∥2 ≤
ξ(1− η)(1− η)

1
2

(1 + η)
1
2

+ ξ

⇒ ξ + ∥u1, u2∥2 ≤
ξ(1− η)(1− η)

1
2 + ξ(1 + η)

1
2

(1 + η)
1
2

⇒ ξ + ∥u1, u2∥2 ≤
ξ[(1− η)(1− η)

1
2 + (1 + η)

1
2 ]

(1 + η)
1
2

⇒ ξ + ∥u1, u2∥2
ξ

≤ (1− η)(1− η)
1
2 + (1 + η)

1
2

(1 + η)
1
2
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⇒ ξ

ξ + ∥u1, u2∥2
≥ (1 + η)

1
2

(1− η)(1− η)
1
2 + (1 + η)

1
2

(9)

Now,

⇒ (1 + η)
1
2

(1− η)(1− η)
1
2 + (1 + η)

1
2

≥ η

⇒ (1 + η)
1
2 ≥ η(1− η)(1− η)

1
2 + η(1 + η)

1
2

⇒ (1 + η)
1
2 − η(1 + η)

1
2 ≥ η(1− η)(1− η)

1
2

⇒ (1− η)(1 + η)
1
2 ≥ η(1− η)(1− η)

1
2

⇒ (1 + η)
1
2 ≥ η(1− η)(1− η)

1
2 (squaring both sides)

⇒ (1 + η) ≥ η2(1− η) ⇒ 1 + η ≥ η2 − η3 ⇒ 1 + η + η3 ≥ η2.

This is true ∀ η ∈ (0, 1) by (9) we get,

G2(T (u1, u2), ξ) ≥ η if ξ > ∥u1, u2∥2. Since, ξ ≤ ∥u1, u2∥2, ξ2−k(∥u1,u2∥2)2
ξ2+k(∥u1,u2∥2)2 = 0, it means

that

G1(u1, u2,
ξ

Mη
) ≥ η ⇒ G2(T (u1, u2), ξ) ≥ η ∀ η ∈ (0, 1).

For all cases, we get,

G1(u1, u2,
ξ

Mη
) ≥ η ⇒ G2(T (u1, u2), ξ) ≥ η ∀ η ∈ (0, 1).

Now

B1(u1, u2,
ξ

Mη
) ≤ 1− η ⇒ B2(T (u1, u2), ξ) ≤ 1− η ∀ η ∈ (0, 1);

B1(u1, u2,
ξ

Mη
) ≤ 1− α ⇒ 2∥x∥2

ξ2(1−α)2+∥x∥2 ≤ 1− α

2∥x∥2 ≤ (1− α)

(
ξ2(1− α)2 + ∥x∥2

)
⇒ 2∥x∥2 ≤ (1− α)(ξ2(1− α)2 + (1− α)∥x∥2)

⇒ 2∥x∥2 − (1− α)∥x∥2 ≤ (1− α)3ξ2 ⇒ 2∥x∥2 − ∥x∥2 + α∥x∥2 ≤ (1− α)3ξ2

⇒ ∥x∥2 + α∥x∥2 ≤ (1− α)3ξ2 ⇒ (1 + α)∥x∥2 ≤ (1− α)3ξ2 ⇒ ∥x∥2 ≤ (1−α)3ξ2

(1+α)

⇒ ∥x∥ ≤ (1−α)
3
2 ξ

(1+α)
1
2

⇒ ∥x∥ ≤ (1−α)(1−α)
1
2 ξ

(1+α)
1
2

⇒ ξ + ∥x∥ ≤ (1−α)(1−α)
1
2 ξ

(1+α)
1
2

+ ξ

⇒ ξ + ∥x∥ ≤ (1−α)(1−α)
1
2 ξ+ξ(1+α)

1
2

(1+α)
1
2

⇒ ξ + ∥x∥ ≤ ξ[(1−α)(1−α)
1
2+(1+α)

1
2 ]

(1+α)
1
2

⇒ ξ + ∥x∥ ≤ ∥x∥[(1−α)(1−α)
1
2+(1+α)

1
2 ]

(1+α)
1
2

⇒ ξ+∥x∥
∥x∥ ≤ (1−α)(1−α)

1
2+(1+α)

1
2

(1+α)
1
2

⇒ ∥x∥
ξ+∥x∥ ≥ (1+α)

1
2

(1−α)(1−α)
1
2+(1+α)

1
2

Now, (1+α)
1
2

(1−α)(1−α)
1
2+(1+α)

1
2
≤ (1−α) ⇒ (1+α)

1
2 ≤ (1−α)(1−α)(1−α)

1
2 +(1−α)(1+α)

1
2

⇒ (1 + α)
1
2 − (1− α)(1 + α)

1
2 ≤ (1− α)2(1− α)

1
2

⇒ (1 + α)
1
2 − (1 + α)

1
2 + α(1 + α)

1
2 ≤ (1− α)2(1− α)

1
2

⇒ α(1 + α)
1
2 ≤ (1− α)2(1− α)

1
2 (squaring both sides)

α2(1 + α) ≤ (1− α)4(1− α) ⇒ α2 + α3 ≤ (1− α)4 − α(1− α)4

⇒ α2 + α3 ≤ [(1− α)2]2 − α[(1− α)2]2 ⇒ α2 + α3 ≤ [1− 2α+ α2]2 − α[1− 2α+ α2]2
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⇒ α2 + α3 ≤ [1 + 4α2 + α4 − 4α− 4α3 + 2α2]− α[1 + 4α2 + α4 − 4α− 4α3 + 2α2]
⇒ α2 + α3 ≤ [1 + 4α2 + α4 − 4α− 4α3 + 2α2]− α− 4α3 − α5 + 4α2 + 4α4 − 2α3

⇒ α2 + α3 ≤ 1 + 10α2 + 5α4 − 5α− 10α3 − α5

⇒ α3 + 10α3 + 5α+ α5 ≤ 1 + 10α2 + 5α4 − α2. This is true ∀ η ∈ (0, 1) we get,

B2(T (u1, u2), ξ) ≤ 1− η if ξ < ∥u1, u2∥2. Since, ξ ≥ ∥u1, u2∥2, ξ2

ξ2+(∥u1,u2∥2)2 = 0, it means

that

B1

(
u1, u2,

ξ

Mη

)
≤ 1− η ⇒ B2(T (u1, u2), ξ) ≤ 1− η ∀ η ∈ (0, 1);

Similarly,

Y1

(
u1, u2,

ξ

Mη

)
≤ 1− η ⇒ Y2(T (u1, u2), ξ) ≤ 1− η ∀ η ∈ (0, 1).

This shows that T is weakly neutrosophic bounded.

Theorem 4.1 If a linear operator T : U → V is strongly neutrosophic bounded on U ,
then it is weakly neutrosophic bounded on U .
Proof Suppose that T : U → V is strongly neutrosophic bounded on U . So, ∃ M > 0
s.t for all u ∈ U and η > 0

G2(T (u), η) ≥ G1

(
u,

η

M

)
and

B2(T (u), η) ≤ B1

(
u,

η

M

)
, Y2(T (u), η) ≤ Y1

(
u,

η

M

) (10)

Let, 0 < ξ < 1, then ∃ Mξ(= M > 0) s.t

G1

(
u,

η

Mξ

)
≥ ξ and B1

(
u,

η

Mξ

)
≤ 1− ξ, Y1

(
u,

η

Mξ

)
≤ 1− ξ

⇒ G2

(
T (u), η

)
≥ G1

(
u,

η

Mξ

)
≥ ξ and B2

(
T (u), η

)
≤ B1

(
u,

η

Mξ

)
≤ 1− ξ,

Y2
(
T (u), η

)
≤ Y1

(
u,

η

Mξ

)
≤ 1− ξ. (using (10))

As this holds for all u ∈ U and η > 0, therefore T : U → V is weakly neutrosophic
bounded. □

Theorem 4.2 A linear operator T : U → V is strongly neutrosophic continuous every-
where on U if T is strongly neutrosophic continuous at a point u0 ∈ U .
Proof Let u0 ∈ U be a point in U s.t T : U → V is strongly neutrosophic continuous at
u0. We shall prove that T is strongly neutrosophic continuous everywhere in U . Since T
is strongly neutrosophic continuous at u0 so for each ϵ > 0, ∃ δ > 0 s.t

G2(T (u)− T (u0), ϵ) ≥ G1(u− u0, δ) and B2(T (u)− T (u0), ϵ) ≤ B1(u− u0, δ),

Y2(T (u)− T (u0), ϵ) ≤ Y1(u− u0, δ).
(11)

Let v ∈ U be any element of U , then u+ u0 − v is also an element of U , and therefore by
replacing u by u+u0−v in (11), we have G2(T (u+u0−v)−T (u0), ϵ) ≥ G1(u+u0−v−u0, δ)
⇒ G2(T (u+ u0 − v)− T (u0), ϵ) ≥ G1(u− v, δ) i.e., G2(T (u)− T (v), ϵ) ≥ G1(u− v, δ) and
B2(T (u+ u0 − v)− T (u0), ϵ) ≤ B1(u+ u0 − v − u0, δ) ⇒ B2(T (u+ u0 − v)− T (u0), ϵ) ≤
B1(u−v, δ) i.e., B2(T (u)−T (v), ϵ) ≤ B1(u−v, δ) Similarly, Y2(T (u)−T (v), ϵ) ≤ Y1(u−v, δ).
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Since, v ∈ U was arbitrarily selected so T : U → V is strongly neutrosophic continuous.
□

Theorem 4.3 A linear map T : U → V is strongly neutrosophic continuous if and only if
T is strongly neutrosophic bounded.
Proof Suppose that T : U → V is strongly neutrosophic continuous on U , then T is
strongly neutrosophic continuous at θ ∈ U where θ denote the zero element of U . So for
ϵ = 1, ∃ δ > 0 s.t for all u ∈ U

G2(T (u)− T (θ), 1) ≥ G1(u− θ, δ) and

B2(T (u)− T (θ), 1) ≤ B1(u− θ, δ), Y2(T (u)− T (θ), 1) ≤ Y1(u− θ, δ).

Case 1. Let u ̸= θ and η > 0. Take v = u
η

G2(T (u), η) = G2(T (ηv), η) = G2(ηT (v), η) = G2(T (v), 1)

≥ G1(v, δ) = G1

(
u

η
, δ

)
= G1

(
u,

η
1
δ

)
= G1

(
u,

η

M

)
where M = 1

δ i.e G2(T (u), η) ≥ G1

(
u,

η

M

)
and

B2(T (u), η) = B2(T (ηv), η) = B2(ηT (v), η) = B2(T (v), 1)

≤ B1(v, δ) = B1

(
u

η
, δ

)
= B1

(
u,

η
1
δ

)
= B1

(
u,

η

M

)
where M = 1

δ i.e B2(T (u), η) ≤ B1

(
u,

η

M

)
; similarly, Y2(T (u), η) ≤ Y1

(
u,

η

M

)
.

Case 2. If u = θ and η > 0, then T (θ) = θ and

G2(θ, η) = G1

(
θ,

η

M

)
= 1 and B2(θ, η) = B1

(
θ,

η

M

)
= 0, Y2(θ, η) = Y1

(
θ,

η

M

)
= 0.

Therefore, in both cases, we have T is strongly neutrosophic bounded.
Conversely, suppose that T is strongly neutrosophic bounded so ∃ M > 0 s.t ∀ u ∈
U and η > 0

G2(T (u), η) ≥ G1

(
u,

η

M

)
and B2(T (u), η) ≤ B1

(
u,

η

M

)
, Y2(T (u), η) ≤ Y1

(
u,

η

M

)
Let ϵ > 0, then we have

G2(T (u), ϵ) ≥ G1

(
u,

ϵ

M

)
and B2(T (u), ϵ) ≤ B1

(
u,

ϵ

M

)
, Y2(T (u), ϵ) ≤ Y1

(
u,

ϵ

M

)
.

Take δ = ϵ
M , then

G2(T (u)− T (θ), ϵ) ≥ G1(u− θ, δ) and

B2(T (u)− T (θ), ϵ) ≤ B1(u− θ, δ), Y2(T (u)− T (θ), ϵ) ≤ Y1(u− θ, δ),

and therefore T is strongly neutrosophic continuous on U . □

Theorem 4.4 If a linear operator T : U → V is sequentially neutrosophic continuous at
u0 in U then it is sequentially neutrosophic continuous on U .
Proof.
Proof Suppose that T : U → V is sequentially neutrosophic continuous at u0 in U . We
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shall show that T is sequentially neutrosophic continuous on U . Let u ∈ U be any arbi-
trary and (uk) be any sequence converging to u w.r.t N1(G1, B1, Y1) then, we have for all
η > 0

lim
k→∞

G1(uk − u, η) = 1 and lim
k→∞

B1(uk − u, η) = lim
k→∞

Y1(uk − u, η) = 0.

This implies that

lim
k→∞

G1((uk − u+ u0)− u0, η) = 1 and

lim
k→∞

B1((uk − u+ u0)− u0, η) = lim
k→∞

Y1((uk − u+ u0)− u0, η) = 0.

Since T is sequentially neutrosophic continuous at u0.

lim
k→∞

G2(T (uk − u+ u0)− T (u0), η) = 1 and

lim
k→∞

B2(T (uk − u+ u0)− T (u0), η) = lim
k→∞

Y2(T (uk − u+ u0)− T (u0), η) = 0.

This gives for each η > 0

lim
k→∞

G2(T (uk)− T (u), η) = 1 and

lim
k→∞

B2(T (uk)− T (u), η) = 0, lim
k→∞

Y2(T (uk)− T (u), η) = 0.

This shows that (T (uk)) → T (u) w.r.t N2(G2, B2, Y2) and therefore T is sequentially
neutrosophic continuous on U . □

The proof of the following two Theorems is omitted as it can be obtained analogously
to the proofs of Theorem 4.2 & Theorem 4.3

Theorem 4.5 A linear operator T : U → V is weakly neutrosophic continuous on U if T
is weakly neutrosophic continuous at a point u0 in U .
Proof. Omitted.

Theorem 4.6 A linear operator T : U → V is weakly neutrosophic continuous if and only
if T is weakly neutrosophic bounded.
Proof Omitted. (follow the proof Theorem 4.3).

5. Conclusion

Neutrosophic norm is an important generalization of fuzzy norm defined for those prob-
lems of real world which seems difficult to solve by crisp norm due to complex indetermi-
nacy and vagueness. In present work we developed some topological aspects of continuity
and boundedness in a more general context i.e. in neutrosophic 2-normed space. The
results present here will be helpful to develop these spaces mathematically.

Open Problems: Extension of some topological concepts in neutrosophic -n- normed
linear spaces.
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