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1. Introduction

As is known [1-2], when the movement of an object on an infinite time interval (0,∞)
is described by a system of linear ordinary differential equations

ẋ = Ax+Bu, x (0) = x0, (1)

and it is required to find the regulation law

u = Kx, (2)

such that problem (11)-(12) was asymptotically stable and the following quadratic func-
tional [16]

J =
1

2

∞∫
0

(x′Qx+ u′Ru)dt, (3)

reached minimum value, such a problem is called optimal stabilization by state. Here x is
a n -dimensional phase vector, u is the m -dimensional vector of control influence, A and
B are the n× n and n×m -dimensional matrices, respectively, and are a stabilizing pair,
Q ≥ 0, R ≥ 0 are symmetric matrices of n× n and m×m dimension, respectively.
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The solution to problem (11)-(13), i.e. the matrix of the feedback circuit K has the
form [3-6]:

K = −R−1B1S, (4)

where S = S′ ≥ 0 is a solution of the algebraic Riccati equation (ARE)

SF + F ′S − SBR−1B′S +Q = 0. (5)

As noted in [7, 8], at a certain time interval, equation (15) has the form

dS

dt
= SF + F 1S − SBR−1BS +Q, (6)

where this interval actually describes the transition process, and at point τ is fulfilled [7]

dS

dt
|t=τ≈ 0, (7)

and at T > τ the system is already in steady state.
Now consider the following optimal control problem on the interval (0, T ), where the

movement of the object is described by equation (11) with boundary conditions

x (0) = x0, x (T ) = xT . (8)

It is required to find the control law (12) in such a way that the closed system (11)-(13)
satisfies condition (15). Indeed, for a sufficiently large T , equation (11) has the form

(x− xT )
′ = A (x− xT ) +Gu, (9)

and feedback (12) ensures convergence limt→T x (t) = xT with a certain sufficient accu-
racy. Note that equation (19) is equivalent to equation

ẋ = Ax+Gu−AxT . (10)

Thus, using a given technique, we determine T , at which x (T ) is approximately equal
to xT . This technique is applicable to solving multipoint problems of optimization, which
is what this article is devoted to. It is assumed that the solution of equation (11) must
pass through given points x0, x1, . . . , xl. To solve such problem, first, for points on the
interval x0, x1, the (11)-(13), (18) are solved and the time T1, is determined, satisfying
condition (17). Thus, taking T0 = 0 we find a solution on the time interval (T 0, T1), the
corresponding trajectory of which connects the points x0 and x1. Further, this technique
is extended to points xi−1 and xi on time intervals (T i−1, Ti) for all i = 2, . . . , l.

2. Problem statement

As is known [8-10, 17-19], the movement of a controlled quadcopter (Fig. 1) is described
by the following system of second-order ordinary differential equations:

m ẍ = −u sinθ,

m ÿ = u cosθ sinφ,

m z̈ = u cosθ cosφ−mg, (11)

ψ̈ = τ̃ψ,
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θ̈ = τ̃θ,

φ̈ = τ̃φ.

Figure 1. Quadcopter.

Here m is the quadcopter mass, and control influences are defined as

u = f1 + f2 + f3 + f4,

τ̃ψ = [(f2 + f4)− (f1 + f2)] l, (12)

τ̃θ = (f2 − f4)l,

τ̃φ = (f3 − f1)l,

where l is the distance from the center of the quadcopter to the engines, and fi is the
lifting force of the i- th engine

fi = kiω
2
i (13)

Here ωi is the angular speed of rotation of the i- th engine (propeller), ki is an
experimentally determined constant. Note that the angular speed of rotation of the motor
depends on the electric current Ii supplied to the motor

ωi =W (Ii) (14)

If we divide each side in the first equations of system (11) by m we get

ẍ = − u

m
sinθ,

ÿ =
u

m
cosθ sinφ, (15)

z̈ =
u

m
cosθ cosφ− g.

Note that here (x, y, z) – are the coordinates of the quadcopter’s center of gravity, and
(ψ, θ, φ) are Euler angles, i.e. yaw, pitch and roll angles, respectively.

Let’s denote

x (t) = x1 (t) , ẋ (t) = x2 (t) , y (t) = y1 (t) , ẏ (t) = y2 (t) ,

ż (t) = z1 (t) , ż (t) = z2 (t) , θ (t) = θ1 (t) , θ̇ (t) = θ2 (t) , (16)
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φ (t) = φ1 (t) , φ̇ (t) = φ2 (t) , ψ (t) = ψ1 (t) , ψ̇ (t) = ψ2 (t) .

Then, taking into account the initial conditions, we obtain the following Cauchy problem

ẋ1 (t) = x2 (t)x1 (0) = x01,

ẋ2 (t) = −u (t)
m

sinθ, (t)x2 (0) = x02,

ẏ1 (t) = y2 (t) y1 (0) = y01,

ẏ2 (t) =
u (t)

m
cosθ 1 (t) sinφ1(t)y2 (0) = y02,

ż1 (t) = z2 (t) z1 (0) = z01

ż2 (t) =
u (t)

m
cosθ 1 (t) · cosφ1 (t)− gz2 (0) = z02 , (17)

θ̇1 (t) = θ2 (t) θ1 (0) = θ01,

θ̇2 (t) = τ̃θ(t) θ2 (0) = θ02,

φ̇1 (t) = φ2 (t) φ1 (0) = φ0
1,

φ̇2 (t) = τ̃φ(t) φ2 (0) = φ0
2,

ψ̇1 (t) = ψ2 (t) ψ1 (0) = ψ0
1,

ψ̇2 (t) = τ̃ψ(t)ψ2 (0) = ψ0
2.

Let’s assume that cosθ · cosφ ̸= 0. Next, assuming that the angles θ, φ are sufficiently
small, taking into account (15) we obtain from system (11)

ẍ = −gθ,

θ̈ = τ̃φ,

ÿ = gφ,

φ̈ = τ̃φ, (18)

z̈ =
ũ

m
− g = uz,

ψ̈ = τ̃ψ.

Here ũ = z1 +mg = u cosθ cosφ.
In this case, the system of equations (17) can be written in the following form:

ẋ1 = x2,
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ẋ2 = −gθ1,

ẏ1 = y2,

ẏ2 = g φ1,

ż1 = z2,

ż2 =
ũ

m
− g =

z1
m

= uz, (19)

θ̇1 = θ2,

θ2 = τ̃θ,

φ̇1 = φ2,

φ̇2 = τ̃φ,

ψ̇1 = ψ2,

ψ̇2 = τ̃θ.

Initial conditions remain unchanged.
Next, if we denote

A =



0 1 0
0 0 0
0 0 0

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 1
0 0 0

0 0 0
−g 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 g
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 1 0
0 0 0
0 0 0

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 1
0 0 0



,
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P =



x1
x2
y1
y2
z1
z2
θ1
θ2
φ1

φ2

ψ1

ψ2



, q =



0
0
0
0
0

ũ
m − g
0
τ̃θ
0
τ̃φ
0
τ̃ψ



, P 0 =



x01
x02
y01
y02
z01
z02
θ01
θ02
φ0
1

φ0
2

ψ0
1

ψ0
2



, (20)

then system (19) can be written in the following compact form:

Ṗ = AP + q, P (0) = P 0. (21)

3. Construction of the regulator

Now let’s consider the following problem. We will look for such a vector q, more
precisely, such functions ũ, τ̃θ, τ̃φ, τ̃ψ, so that the equality P (T ) = P T holds. To begin

with, let’s assume that P T = 0. In equation (21), let’s the vector q represent as

q = Bu, (22)

where

B =



0 0 0
0 0 0
0 0 0

0
0
0

0 0 0
0 0 0
1 0 0

0
0
0

0 0 0
0 1 0
0 0 0

0
0
0

0 0 1
0 0 0
0 0 0

0
0
1



, u =


uz
τ̃θ
τ̃φ
τ̃ψ

 . (23)

Then (21) takes the following form [20]

Ṗ = AP +Bu, P (0) = P 0. (24)

To synthesize a linear optimal controller of problem (24), we use the following functional
as a quality criterion:

J =

∞∫
0

(
P ′QP + u′Ru

)
dt, (25)
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where Q = Q1 ≥ 0 is the matrix of dimension 12 × 12, and R = R1 > 0 is the 4 × 4
-dimensional matrix of the following form:

R =


1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

 , Q =


Q4,4

1

04,4 Q4,4
2

04,8

04,4

02,4 02,4

02,10
Q2,2

3 02,2

Q2,2
4

 ,

Q4,4
1 =


1 −2
−2 4

−4 6
8 −12

−4 8
6 −12

16 · 104 −24
−24 1

 Q2,2
3 = Q2,2

4 =

[
1 0
0 1

]
,

Q4,4
2 =


1 −2
−2 4

−4 6
8 −12

−4 8
6 −12

16 −24
−24 36

 . (26)

Here 0k,n is the k × n-dimensional matrix.
Now, using control action

u(t) = K P (t), (27)

we minimize the functional (25) in such a way that the closed-loop system

Ṗ = (A+BK)P (t) , P (0) = P 0 (28)

was asymptotically stable, i.e. the inequality

Reλ(P +AK) < 0 (29)

was fulfilled.
Thus, the problem is reduced to finding the matrix K. To find it, first solve the Riccati

equation

A′S + SA− SBR −1 B′S +Q = 0, (30)

and S ≥ 0 is determined. Further according to the formula

K = R −1 B′S, (31)

K is determined. Then, using this matrix, the Cauchy problem (28) is solved and thereby
the trajectory P (t) of the optimal control problem (24)-(25) is found, and the optimal
control u(t) is determined by formula (27).
Since closed system (28) is asymptotically stable, it is obvious

lim
t→∞

P (t) = 0 , (32)

i.e. P (t)
t→∞−→P T .

Now let’s assume that P T ̸= 0. For problem (24)-(25), we find a control u(t), such that

the solution P (t) of the Cauchy problem (24) satisfies P (t)
t→∞−→P T . For this purpose, we

introduce the following notation:

P (t) = P (t)− P T .
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Then the initial condition passes to P (0) = P (0)− P T = P 0−P T = P
0
. Then, similarly

to (28), we obtain the following Cauchy problem in the form of a closed system

Ṗ (t) = (A+BK)P (t) , P (0) = P
0
, (33)

for which, due to asymptotically stability, we have P (t)
t→∞−→0, and the control influence

has the form u = KP (t) = K(P (t)− P T ). And this means that P (t)
t→∞−→P T . From (33)

we easily obtain

Ṗ (t) = (A+BK)
(
P (t)− P T

)
, P (0) = P 0. (34)

In other words, if equation (33) is replaced by equation

Ṗ (t) = (A+BK) P (t)− (A+BK)P T , (35)

then its solution will satisfy the condition P (t) → P T . Thus, solving equation (35) with
the corresponding initial condition we obtain a solution that satisfies the condition

P (t)
t→∞−→P T , (36)

and the control action is determined by the formula

u (t) = K(P (t)− P T ). (37)

From (36) it follows that for a sufficiently small ε > 0 one can find such T , for which∣∣P (T )−P T
∣∣ < ε. Thus, we can state P (T ) ≈ P T with sufficient accuracy. Note that

T can be found from conditions (17). In this case, it can be argued that the solution to
equation (35) will satisfy the boundary condition (18)

P (T ) ≈ P T .

4. Regulator for multi-point problem

Now let’s consider the problem of constructing a regulator for controlling the motion of a
quadcopter [13-15], the trajectory of which should pass through the points P 0, P 1, . . . , P l.
Let’s first consider the problem

Ṗ1 (t) = (A+BK)
(
P1 (t)− P 1

)
, P1(T0) = P 0. (38)

J1 =

∞∫
T0

(
P1

′QP1 + u1
′Ru1

)
dt, (39)

where A, B,Q, R and K are determined by the formulas (20), (23), (26) and (31). Solving
this synthesis problem as in the previous paragraph and using (17) we can determine a
T1 > T0, for which P1(T1) ≈ P 1. Thus, we have shown that the solution of problem
(38)-(39) at u1 (t) = K

(
P1 (t)− P 1

)
satisfies the boundary conditions P1(T0) = P 0 and

P1(T1) = P 1. Next, we move on to pairs of points (P 1, P 2),. . . , (P i−1, P i),. . . , (P l−1, P l).
Then for i = 2, 3, . . . , l we consider the problem

Ṗi (t) = (A+BK)
(
Pi (t)− P i

)
, Pi(Ti−1) = P i−1, (40)
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Ji =

∞∫
Ti−1

(
Pi

′QPi + ui
′Rui

)
dt. (41)

Solving the synthesis problem (40), (41) for each i we can determine such Ti > Ti−1,
for which Pi(Ti) ≈ P i. The control action on the interval (Ti−1, Ti) is defined as ui (t) =
K

(
Pi (t)− P i

)
.

5. Example

Let l = 4 and points P 0, P 1, P 2, P 3, P 4 are given as follows:

P 0 =



20
0

−10
0
0
0
0
0
0
0
0
0



, P 1 =



20
0

−10
0

200
0
0
0
0
0
0
0



, P 2 =



150
0

−10
0

200
0
0
0
0
0
0
0



, P 3 =



150
0

100
0

200
0
0
0
0
0
0
0



, P 4 =



0
0
0
0
0
0
0
0
0
0
0
0



,

Using the proposed methodology, we have proposed a regulator synthesis algorithm,
with the help of which the trajectory of the center of gravity of the controlled quadcopter
is found (Fig. 2).

Figure 1. Trajectory of the center of gravity of a controlled quadcopter.

Here area 1 means vertical movement, 2 means lateral movement, 3 means horizontal
movement, and 4 means landing the quadcopter.

6. Conclusions

We consider the problem of controlling the movement of a quadcopter, the trajectory of
which must pass through each of the given points. To solve this problem using the LQR
theory, a computational algorithm is proposed, which ensures fairly accurate passage of
the trajectory through given points.
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