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SEIDEL ENERGY OF NON-COMMUTING GRAPH FOR THE GROUP

U6n

M. U. ROMDHINI1∗, A. NAWAWI2, F. AL-SHARQI3, A. AL-QURAN4, §

Abstract. The non-commuting graph for the group G, denoted by ΓG, whose vertex
set contains all group elements excluding central elements, where two distinct vertices
vi and vj are adjacent whenever vivj ̸= vjvi. The non-diagonal entries of the Seidel
matrix are −1 for two adjacent vertices, or one for non-adjacent vertices, whereas the
diagonal entries are zero. This study presents the spectrum and energy of ΓG for the
group G = U6n associated with the Seidel matrix.
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1. Introduction

Research which relates graph and group theories provides an analysis of a graph whose
vertices are group elements, and whose edges link a pair of distinct vertices based on
certain characteristics of the interactions between the elements. One of these graphs is
the non-commuting graph for the group G, denoted by ΓG which has G\Z(G) as the vertex
set and vi, vj ∈ G\Z(G) are adjacent whenever vivj ̸= vjvi [1].

In spectral graph theory, matrices are associated with graphs, commonly with a type of
matrix called adjacency (A) matrices. Historically, Gutman in 1978 published an article
showing that the adjacency energy of a finite graph is the sum of its absolute eigenvalues
[5]. It is also evident in the spectra of the graph that emphasis is placed on the discussion
of the spectral radius. According to Horn and Johnson [6], the spectral radius of ΓG refers
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to the largest eigenvalue of a matrix associated with a graph. In addition, further research
has proved that the adjacency energy of any graph is never an odd integer [2] or never the
square root of an odd integer [12].

Apart from the adjacency matrix, Van Lint and Seidel [21] introduced the Seidel (S)
matrix which is a symmetric (0,−1, 1)-adjacency matrix for a graph as S = J − 2A − I,
where J is a square matrix with all entries are equal to 1. Discussion on Seidel energy has
been shown by Sarmin et al. [19] which focuses on the Cayley graph for dihedral groups.
Recently, significant advances have been made in algebraic graph theory, particularly for
commuting and non-commuting graphs. This is detailed in Bashir and Ahmadidelir [3]
who examined the adjacency energy of ΓG of Chein Maufang loops. The degree sum,
degree exponent sum, degree subtraction, neighbors degree sum, maximum degree, and
minimum degree energies of commuting and non-commuting graphs for dihedral groups
can also be found in [14, 15, 16, 17, 18].

Furthermore, equienergetic properties of graphs corresponding to the Seidel matrix can
be found in [20]. Ramane et al. [13] presented the characteristic polynomial of the Seidel
Laplacian matrix of graphs as well as the Seidel signless Laplacian matrix. Furthermore,
Mandal et al. [10] proved that -1 is always the eigenvalue of the Seidel matrix of the chain
graphs. They also showed the Seidel energy bound of those graphs.

For the purpose of this paper, we focus on the finite and non-abelian group U6n of order
6n for n ≥ 1. It is defined as U6n =

〈
a, b : a2n = b3 = e, a−1ba = b−1

〉
[7]. Hence, ΓG for

U6n can be denoted by ΓU6n .
The paper is organized in the following manner. Several existing results are presented

in the second section that is relevant to our research. Section 3 contains new main results
on formulas for the spectrum and energy of ΓU6n associated with the Seidel matrix.

2. Preliminaries

In this part, we describe some basic properties and previous results which are beneficial
for the next section.

Definition 2.1. [21] The Seidel matrix of order n × n associated with ΓG is given by
S(ΓG) = [sij ] whose (i, j)-th entry

sij =

 −1, if vi ̸= vj and they are adjacent
1, if vi ̸= vj and they are not adjacent
0, if vi = vj .

The S−spectrum of ΓG can be written as:

σS(ΓG) =

(
λ1 λ2 . . . λn

k1 k2 . . . kn

)
,

where λ1, λ2, . . . , λn are the eigenvalues (not necessarily distinct) of S(ΓG) and k1, k2, . . . , kn
are their respective multiplicities. Therefore, the S−energy of ΓG can be defined as follows:

ES(ΓG) = Σn
i=1 |λi| ,

and S−spectral radius of ΓG are defined as

ρS(ΓG) = max{|λ| : λ ∈ σS(ΓG)}.
Furthermore, ΓU6n is a simple graph, therefore we can construct the Seidel matrix and

compute the eigenvalues from the solution of the characteristic polynomial as a determi-
nant form. The following theorems are the guidelines to simplify the determinant formula
of a matrix which can be partitioned into four blocks.
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Theorem 2.1. [4] If a square matrix M =

[
A B
C D

]
can be partitioned into four blocks

where |A| ≠ 0, then the determinant of M is

|M | =
∣∣∣∣ A B
O D − CA−1B

∣∣∣∣ = |A|
∣∣D − CA−1B

∣∣ .
Now we define the sets G1 =

{
a2r+1 : 0 ≤ r ≤ n− 1

}
, G2 =

{
a2r+1b : 0 ≤ r ≤ n− 1

}
,

G3 =
{
a2r+1b2 : 0 ≤ r ≤ n− 1

}
, G4 =

{
a2rb : 0 ≤ r ≤ n− 1

}
, and

G5 =
{
a2rb2 : 0 ≤ r ≤ n− 1

}
. It is clear that |G1| = |G2| = |G3| = |G4| = |G5| = n.

Lemma 2.1. [11] For the group U6n and 0 ≤ r ≤ n− 1, we have the following:

(1) The center of U6n is Z(U2n) =
〈
a2
〉
.

(2) The centralizer of element a2r+1 is CU6n

(
a2r+1

)
= ⟨a⟩.

(3) CU6n

(
a2r+1b

)
= ⟨a2⟩ · ⟨

{
a2s+1b : 0 ≤ s ≤ n− 1

}
⟩.

(4) CU6n

(
a2r+1b2

)
= ⟨a2⟩ · ⟨

{
a2s+1b2 : 0 ≤ s ≤ n− 1

}
⟩.

(5) CU6n

(
a2rb

)
= ⟨a2⟩ · ⟨

{
a2sb, a2sb2 : 0 ≤ s ≤ n− 1

}
⟩.

Corollary 2.1. [8] Let ΓU6n be the non-commuting graph for U6n where n ≥ 1. If dvi
is the degree of vertex vi, which is the number of vertex that is adjacent to vi, then for
0 ≤ r ≤ n− 1,

(1) da2r+1 = 4n,
(2) da2r+1b = 4n,
(3) da2r+1b2 = 4n,
(4) da2rb = 3n,
(5) da2rb2 = 3n.

Afterward, graphs with n vertices can be hyperenergetic, i.e. they have a larger energy
than a complete graph Kn with n vertices. In light of the fact that U6n has 5n vertices,
we have the following definition.

Definition 2.2. [9] A 5n−vertex graph ΓU6n is hyperenergetic if E(ΓU6n) > 2(5n− 1).

3. Main Results

In this part, we determine spectral properties for ΓU6n with respect to the Seidel matrix.
We begin with the characteristic polynomial of the Seidel matrix of ΓU6n .

Theorem 3.1. Let ΓU6n be the non-commuting graph for U6n, then the characteristic
polynomial of S(ΓU6n) is

PS(ΓU6n
)(λ) = (λ+ 1)5n−3(λ− 1)2

(
λ2 + (2− n)λ+ 1− n− 8n2

)
.

Proof. We know that |U6n\Z(U6n)| = 5n which implies S(ΓU6n) to have 5n vertices, and
they are the members of G1, G2, G3, G4 and G5. By Lemma 2.1 and Corollary 2.1, we
can provide 5n× 5n matrix S(ΓU6n) whose entries are:

(1) sij = −1, for 1 + k ≤ i ̸= j ≤ n+ k and k = 0, n, 2n, 3n, 4n;
(2) sij = −1, for 3n+ 1 ≤ i ≤ 4n and 4n+ 1 ≤ j ≤ 5n;
(3) sij = −1, for 4n+ 1 ≤ i ≤ 5n and 3n+ 1 ≤ j ≤ 4n;
(4) sij = 1, otherwise.
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Now S(ΓU6n) can be presented as follows:

a . . . a2n−1 ab . . . a2n−1b ab2 . . . a2n−1b2 b . . . a2(n−1)b b2 . . . a2(n−1)b2



a 0 . . . 1 −1 . . . −1 −1 . . . −1 −1 . . . −1 −1 . . . −1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

a2n−1 1 . . . 0 −1 . . . −1 −1 . . . −1 −1 . . . −1 −1 . . . −1
ab −1 . . . −1 0 . . . 1 −1 . . . −1 −1 . . . −1 −1 . . . −1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

a2n−1b −1 . . . −1 1 . . . 0 −1 . . . −1 −1 . . . −1 −1 . . . −1
ab2 −1 . . . −1 −1 . . . −1 0 . . . 1 −1 . . . −1 −1 . . . −1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

a2n−1b2 −1 . . . −1 −1 . . . −1 1 . . . 0 −1 . . . −1 −1 . . . −1
b −1 . . . −1 −1 . . . −1 −1 . . . −1 0 . . . 1 1 . . . 1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

a2(n−1)b −1 . . . −1 −1 . . . −1 −1 . . . −1 1 . . . 0 1 . . . 1
b2 −1 . . . −1 −1 . . . −1 −1 . . . −1 1 . . . 1 0 . . . 1

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

a2(n−1)b2 −1 . . . −1 −1 . . . −1 −1 . . . −1 1 . . . 1 1 . . . 0

Clearly, the matrix S(ΓU6n) can be partitioned into 16 blocks as given below:

S(ΓU6n) =


(J − I)n −Jn −Jn −Jn×(2n)

−Jn (J − I)n −Jn −Jn×(2n)

−Jn −Jn (J − I)n −Jn×(2n)

−J(2n)×n −J(2n)×n −J(2n)×n (J − I)2n

 .

Consequently, the characteristic polynomial of S(ΓU6n), PS(ΓU6n
)(λ) is given as follows:

PS(ΓU6n
)(λ) =

∣∣∣∣∣∣∣∣
λIn − (J − I)n Jn Jn Jn×(2n)

Jn λIn − (J − I)n Jn Jn×(2n)

Jn Jn λIn − (J − I)n Jn×(2n)

J(2n)×n J(2n)×n J(2n)×n λI2n − (J − I)2n

∣∣∣∣∣∣∣∣ .
In order to get the formula of PS(ΓU6n

)(λ), row and column operations need to be per-

formed. Let Ri and Ci be the i−th row and column of PS(ΓU6n
)(λ), respectively. We apply

the following steps:

(1) R4n+i −→ R4n+i −R3n+i, for i = 1, 2, . . . , n.
(2) R3n+1+i −→ R3n+1+i −R3n+1, for i = 1, 2, . . . , n− 1.
(3) Rj−i −→ Rj−i −R3n−i, for i = 1, 2, . . . , n and j = n, 2n.
(4) R3n+1−i −→ R3n+1−i −R3n+1, for i = 1, 2, . . . , n− 1.
(5) C2n+i −→ C2n+i + Cj+i, for i = 1, 2, . . . , n and j = 0, n.
(6) C3n+i −→ C3n+i + C4n+i, for i = 1, 2, . . . , n.
(7) Rj+i −→ Rj+i −R2n, for i = 1, 2, . . . , n− 1 and j = 0, n.
(8) Cj −→ Cj + Cj−1 + Cj−2 + . . .+ Cj−(n−1), j = n, 2n, 3n.
(9) C3n+1 −→ C3n+1 + C3n+2 + C3n+3 + . . .+ C4n−1,

and PS(ΓU6n
)(λ) can be rewritten as the following determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(λ + 1)In−1 0(n−1)×1 0n−1 0(n−1)×1 0n−1 0(n−1)×1 0(n−1)×1 0n−1 0(n−1)×n

−2J1×(n−1) λ − 1 01×(n−1) 0 01×(n−1) 0 0 01×(n−1) 01×n

0n−1 0(n−1)×1 (λ + 1)In−1 0(n−1)×1 0n−1 0(n−1)×1 0(n−1)×1 0n−1 0(n−1)×n

01×(n−1) 0 −2J1×(n−1) λ − 1 0n−1 0(n−1)×1 0(n−1)×1 0n−1 0(n−1)×n

0n−1 0(n−1)×1 0n−1 0(n−1)×1 (λ + 1)In−1 0(n−1)×1 0(n−1)×1 0n−1 0(n−1)×n

J1×(n−1) n J1×(n−1) n J1×(n−1) λ + n + 1 2n 2J1×(n−1) J1×n

J1×(n−1) n J1×(n−1) n 3J1×(n−1) 3n λ − 2n + 1 −2J1×(n−1) −J1×n

0n−1 0(n−1)×1 0n−1 0(n−1)×1 0n−1 0(n−1)×1 0(n−1)×1 (λ + 1)In−1 0(n−1)×n

0n×(n−1) 0n×1 0n×(n−1) 0n×1 0n×(n−1) 0n×1 0n×(n−1) 0n×1 (λ + 1)In

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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By Theorem 2.1, PS(ΓU6n
)(λ) can be simplified as follows:

PS(ΓU6n
)(λ) = (λ+ 1)5n−4(λ− 1)2

(
λ2 + (2− n)λ+ 1− n− 8n2

)
.

□

Consequently, the Seidel spectrum of the non-commuting graph for U6n can be expressed
as described in the following theorem.

Theorem 3.2. Let ΓU6n be the non-commuting graph for U6n, then the S−spectrum of
ΓU6n is (

n−2
2 + n

√
33
2 1 −1 n−2

2 − n
√
33
2

1 2 5n− 4 1

)
.

Proof. The four eigenvalues of ΓU6n is given by the roots of PS(ΓU6n
)(λ) = 0 which is

obtained from Theorem 3.1. The eigenvalues are λ1,2 = n−2
2 ± n

√
33
2 , each of multiplicity

1, λ3 = 1 of multiplicity 2, and λ4 = −1 with multiplicity 5n − 4. Therefore, we get the
spectrum of ΓU6n associated with Seidel matrix. □

The followings are the results of the Seidel spectral radius and energy of the non-
commuting graph for U6n

Theorem 3.3. Let ΓU6n be the non-commuting graph for U6n, then the S−spectral radius
of ΓU6n is

ρS(ΓU6n) =
n− 2

2
+ n

√
33

2
.

Proof. It is clear by Theorem 3.2, the maximum absolute value of λi for i = 1, 2, 3, 4 is
n−2
2 + n

√
33
2 . □

Theorem 3.4. Let ΓU6n be the non-commuting graph for U6n, then the S−energy of ΓU6n

is

ES(ΓU6n) = 5n− 2 + n
√
33.

Proof. Based on Theorem 3.2, we can calculate Seidel energy of ΓU6n in the following
manner:

ES(ΓU6n) =

∣∣∣∣∣n− 2

2
± n

√
33

2

∣∣∣∣∣+ (5n− 4)| − 1|+ (2) |1| = 5n− 2 + n
√
33.

□

According to Theorem 3.4 and Definition 2.2, the following can be concluded:

Corollary 3.1. ΓU6n is hyperenergetic with respect to the Seidel energy.

Proof. From Theorem 3.4, we know that

ES(ΓU6n) = 5n− 2 + n
√
33 = (5 +

√
33)n− 2 > 10n− 2.

Based on Definition 2.2, ΓU6n is hyperenergetic. □

Corollary 3.2. ES(ΓU6n) is never an odd integer.

Proof. Since n is a natural number, then ESΓU6n) = 5n − 2 + n
√
33 is never an odd

integer. □
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Corollaries 3.1 and 3.2 comply with the well-known fact from [2] and [12] that the energy
of a graph is never an odd integer as well as never the square root of an odd integer.

We end this section with Example 3.1 to serve as an example of computation when
n = 1.

Example 3.1. Let U6 = {e, a, b, ab, b2, ab2} and Z(U6) = {e}, where CU6(a) = {e, a},
CU6(b) = {e, b, b2} = CU6(b

2), CU6(ab) = {e, ab}, CU6(ab
2) = {e, ab2}. For G = U6\Z(U6),

then the non-commuting graph ΓU6, whose set of vertices is U6\Z(U6), is a simple graph
of order five, as illustrated in Figure 1.

a b

ab b2

ab2

Figure 1. The non-commuting graph for the group U6, ΓU6

Now we construct 5× 5 Seidel matrix of ΓU6 as follows:

S(ΓU6) =

a ab ab2 b b2


a 0 −1 −1 −1 −1
ab −1 0 −1 −1 −1
ab2 −1 −1 0 −1 −1
b −1 −1 −1 0 1
b2 −1 −1 −1 1 0

Hence, the characteristic polynomial of S(ΓU6) is

PS(ΓU6
)(λ) = (λ+ 1)(λ− 1)2(λ2 + λ− 8).

By using Maple, we have confirmed that the S-spectrum of ΓU6 is

σS(ΓU6) =

(
−1
2 +

√
33
2 1 −1 −1

2 −
√
33
2

1 2 1 1

)
and the S-spectral radius of ΓU6 is

ρS(ΓU6) =
−1

2
+

√
33

2
.

Therefore, the S−energy of ΓU6 is

ES(ΓU6) = (1)| − 1|+ (2)|1|+

∣∣∣∣∣−1

2
±

√
33

2

∣∣∣∣∣ = 3 +
√
33.

4. Conclusions

Seidel energy of the non-commuting graph for the group U6n, ΓU6n , is certainly not an
odd integer. Moreover, ΓU6n is a hyperenergetic graph with respect to Seidel energy.

As a future view of these methods, we recommend combining them with [22, 23], which
is essentially an extension of the graph matrix based on Q-NSS matrix.
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