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TRAVELLING WAVE SOLUTIONS FOR THE TIME-FRACTIONAL

EQUATIONS BY THE SINE-GORDON EXPANSION METHOD

METIN ÜNAL1∗, §

Abstract. The aim of this paper is to explore travelling wave solutions by utilising the
novel sine-Gordon expansion method for the time-fractional (1 + 1)-dimensional Hirota
Satsuma equation and the time-fractional (2 + 1) -dimensional Caudrey-Dodd-Gibbon-
Kotera-Sawada equations. Using the traveling wave transformation, the fractional PDE
turns into an ODE. Applying the auxiliary equation from the described method, we get
an algebraic polynomial, setting the like power to zero, we get a system of algebraic
equations. Solving these equations by using mathematical software program, we acquire
the solution sets for the constants. Abundant travelling wave solutions are obtained and
expressed in terms of hyperbolic functions. Some graphics of the solutions have also been
presented. The proposed method is direct and effective in solving nonlinear evolution
equations.
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1. Introduction

In the last decade, fractional differential equations(FDEs) are attracted a great deal
of attention and widely used in many scientific research field by researchers. FDEs can
be classified as an extension of classical ordinary differential equations which they have
integer order. The exact solutions of nonlinear fractional partial differential equations
(FPDEs) play a significant role in understanding the nonlinear physical systems which
are determinated by these FPDEs. For instance FPDEs can be used to describe various
complex phenomena such as in fluid flow, acoustic waves, signal processing, viscoelas-
ticity, systems identification, control theory, etc. The investigation of exact solutions of
nonlinear FPDEs come up with many interesting and useful methods which are developed
by researchers. These methods are as follows; the trial function method [1], the Jacobi
elliptic function expansion [2, 50, 53, 54], the fractional sub-equation method [3, 4, 5], the
homogeneous balance method [6, 7, 8], the differential transformation method [9, 10], the

1 Department of Mathematics and Science, University of Uşak, Uşak Türkiye.
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exponential function method [11, 12], the sub-ODE method [13, 14], Adomian decomposi-

tion method [15, 16], the (G
′
/G)-expansion method [17, 19, 51], the (G

′
/G, 1/G)-expansion

method [18, 64], the (G
′
/G2)-expansion method [65], the homotopy analysis method [20],

the tanh-function expansion method [21, 57, 59, 61], the tanh-coth method [55, 63], the
mapping method [52], the modified simple equation (MSE) method [58], the advanced
exponential function method [62] and so on.

In this study, we consider the sine-Gordon expansion method [22, 23, 24, 56] for solv-
ing the time fractional (1 + 1)-dimensional Hirota-Satsuma (HS) equation and the time-
fractional nonlinear (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation
(CDGKS).

The time-fractional (1 + 1)-dimensional Hirota-Satsuma equation is a nonlinear partial
differential equation that arises in the field of mathematical physics. It is an extension of
the Hirota-Satsuma equation, which is a well-known integrable equation with applications
in various areas, including nonlinear optics, plasma physics, and fluid dynamics. The
time-fractional version of the (1 + 1)-dimensional Hirota-Satsuma equation incorporates
fractional derivatives in time, which allows for modeling anomalous diffusion and nonlocal
effects in physical systems. Fractional derivatives are generalizations of ordinary deriva-
tives to non-integer orders, and they introduce memory and long-range interactions into
the equation. The study of the time-fractional (1 + 1)-dimensional Hirota-Satsuma equa-
tion involves investigating its properties, such as soliton solutions, integrability, and the
effect of fractional derivatives on the dynamics of the system. Understanding this equa-
tion and its solutions can provide valuable insights into the behavior of complex physical
phenomena and help in the development of new mathematical techniques for modeling
and analysis [25].

The time-fractional nonlinear (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada
equation is a significant generalization of the classical Caudrey-Dodd-Gibbon-Kotera-
Sawada equation, incorporating fractional derivatives in time. This equation has attracted
attention in the field of nonlinear science and mathematical physics due to its ability to
model various physical phenomena with nonlocal and memory effects.

In order to transform FPDEs into integer order differential equations, we use the mod-
ified Riemann-Liouville derivative proposed by Jumarie [26], which is defined as in the
following

Dα
t f(t) =


1

Γ(1−α)

t∫
0

(t− ξ)−α−1 [f(ξ)− f(0)] dξ , α < 0

1
Γ(1−α)

d
dt

t∫
0

(t− ξ)−α [f(ξ)− f(0)] dξ , 0 < α < 1(
f (n)(t)

)(α−n)
, n ≤ α < n+ 1 , n ≥ 1,

where α is the order of derivative, f : R → R, f(t) is a continuous function, t → f(t)
function and Γ(α) is the gamma function given as

Γ(α) = lim
n→∞

nαn!

α(α+ 1)(α+ 2) . . . (α+ n)
.

The Jumarie’s modified Riemann-Liouville derivative has the following derivative prop-
erties

• Dα
t t

r = Γ(1+r)
Γ(1+r−α) t

r−α,

• Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t),

• Dα
t f(g(t)) = f

′
g [g(t)]D

α
t g(t) = Dα

g f [g(t)]
(
g
′
(t)
)α

.
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The derivative of α−order of a constant is nought. The derivatives are applicable to
any differentiable or non differentiable functions.

The rest of this paper is prepared as follows. In Section 2, we introduce the sine-Gordon
expansion method to find exact solutions for FPDEs. Section 3 is allocated to find new
exact solutions for the time fractional (1 + 1)-dimensional Hirota-Satsuma equation with
the help of the sine-Gordon expansion technique. In Section 4, we study the time-fractional
nonlinear (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation by the sine-
Gordon expansion technique and find new exact solutions. Some plots of the graphs for
the solutions are also given. Finally, some discussions are given in the conclusion.

2. Description of the sine-Gordon expansion method

This method deals with the nonlinear hyperbolic partial differential equation, namely
the sine-Gordon equation in the following form [27, 28]

uxx − utt = a2 sin(u), (1)

where u = u(x, t) and a is a parameter. Introducing the travelling wave transformation

u(x, t) = U(ξ) , ξ = kx− ct, (2)

where k is the wave parameter and c is the velocity of the wave. With the help of this
transformation (2), Eq. (1) reduces into the nonlinear ODE

U ′′ =
a2

k2 − c2
sin(U). (3)

In order to simplify (3), we rewrite in the following form[(
U

2

)′]2
=

a2

k2 − c2
sin2

(
U

2

)
+ C, (4)

where C is the integration constant. For simplicity , we take C = 0,
U

2
= w (ξ) and

a2

k2 − c2
= m2 in (4) , we get

w (ξ)′ = m sin (w (ξ))

and if we set m = 1, we obtain the simplified form of sine-Gordon equation

w′ = sin (w) . (5)

The solution of (5) gives

sin (w) = sin (w (ξ)) =
2ℓeξ

1 + ℓ2e2ξ
= sech (ξ) , for ℓ = 1, (6)

cos (w) = cos (w (ξ)) =
−1 + ℓ2e2ξ

1 + ℓ2e2ξ
= tanh (ξ) , for ℓ = 1, (7)

where ℓ is the integration constant.
Next, suppose that the general form of nonlinear evolution equation is

F (u, ux, ut, uxx, utt, utx...) = 0, (8)

where F is a polynomial of u = u(x, t) and its partial derivatives. Using the transformation
(2), the equation (8) reduces to the following nonlinear ordinary differential equation
(ODE)

G(U,U
′
, U

′′
, U

′′′
, ...) = 0, (9)
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where G is a polynomial of U and its derivatives with respect to ξ.
Next, we consider the solution for the equation (9) in the following form

U (ξ) = A0 +

N∑
i=1

tanhi−1 (ξ) [Bi sech (ξ) +Ai tanh (ξ)] , (10)

and substitute the expressions in (6) and (7) into (10), we get

U (w) = A0 +

N∑
i=1

cosi−1 (w) [Bi sin (w) +Ai cos (w)] . (11)

The value of N will be found out by the homogeneous balancing, which is considering
the terms with the highest order derivatives and the highest order nonlinear term in (9).
Substituting the expression (11) into (9) and setting each coefficient of [sinp(w), cosq(w)]
to zero acquire a set of algebraic equations. Solving these algebraic equations, we can find
the values for k, c, An and Bn. Finally, substituting the values of k, c, An and Bn into (10),
hence we complete the solution for the nonlinear evolution equation (8).

3. The time-fractional (1 + 1)-dimensional Hirota-Satsuma equation

The Hirota-Satsuma-Ito equations (HSI) are discovered from the Boussinesq equation
via a Bäcklund transformation [29] by Hirota and Satsuma and known to represent prop-
agation of unidirectional shallow water waves [30]. We write the HSI equations [31]

wt = uxxt + 3uut − 3uxvt + αux,

wx = −uy, (12)

vx = −u.

If we take α = −1 and y → −x, equations (12) reduce to the (1 + 1)-dimensional Hirota-
Satsuma equation

ut = uxxt + 3uut + 3ux∂
−1
x ut − ux, (13)

where u = u(x, t) and ∂−1
x denote integration with respect to x. From (13), the time-

fractional (1 + 1)-dimensional Hirota-Satsuma equation (HS) can be written as follows

Dα
t u = Dα

t (uxx) + 3uDα
t u+ 3ux∂

−1
x (Dα

t u)− ux. (14)

Applying the following wave transformation

u(x, t) = U(ξ) , ξ = ax+
ctα

Γ(1 + α)
,

to Eq.(14), converts into to the following nonlinear ODE

(a+ c)U ′ = ca2U ′′′ + 3c(a+ 1)UU ′, (15)

where c is the velocity of the wave and a is the wave number . The superscripts in U show
the order of derivative with respect to ξ. Next, we can integrate Eq. (15) and neglect the
integration constant, hence we get

(a+ c)U = ca2U ′′ +
3

2
c(a+ 1)U2. (16)

To determine the value of N in (10) and (11), we homogeneously balance the terms U ′′

and U2 in Eq.(16), and get N = 2. We rewrite from (10) and (11) for N = 2

U (ξ) = A0 +B1 sech(ξ) +A1 tanh(ξ) +B2 tanh(ξ) sech(ξ) +A2 tanh
2(ξ), (17)

U (w) = A0 +B1 sin(w) +A1 cos(w) +B2 cos(w) sin(w) +A2 cos
2(w), (18)
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and the derivative of (18) is

U ′′(w) = 2 sin2 (w)
(
1− 3 cos2(w)

)
A2 + sin(w) cos(w)(6 cos2(w)− 5)B2

− sin(w) (sin(2w)A1 − cos(2w)B1) . (19)

On substituting the values (18) and (19) into Eq.(16) and setting the coefficients of
sinm(w),cosn(w) to zero, we obtain the following set of algebraic equations:

C0 : −6ca2A2 +
3

2
c(a+ 1)(B2

2 −A2
2) = 0,

C1 : 6ca2B2 + 3c(a+ 1)A2B2 = 0,

C2 : 2ca2B1 + 3c(a+ 1)(A1B2 +A2B1) = 0,

C3 : 2ca2A1 + 3c(a+ 1)(A1A2 −B1B2) = 0,

C4 : (4ca2 − a− c)A2 +
3

2
c(a+ 1)(2A0A2 +A2

1 + 2A2
2 −B2

1 −B2
2) = 0,

C5 : (a+ c− ca2)B2 − 3c(a+ 1)(A0B2 +A1B1 +A2B2) = 0,

C6 : (a+ c− ca2)B1 − 3c(a+ 1)(A0B1 +A1B2 +A2B1) = 0,

C7 : (a+ c)A1 − 3c(a+ 1)(A0 +A2)A1 = 0,

C8 : (a+ c)(A0 +A2)−
3

2
c(a+ 1)(A2

0 + 2A0A2 +A2
1 +A2

2) = 0.

Solving these equations by using mathematical software program, we get the following set
of solutions:

Set1{
c =

−a

a2 + 1
, A0 =

4a2

3(a+ 1)
, A1 = 0, A2 =

−2a2

a+ 1
, B1 = 0, B2 = ∓ 2Ia2

a+ 1
, I =

√
−1

}
Plugging these values into (17), hence the solution for the Eq.(14) is

u(x, t) =
2a2

a+ 1

(
2

3
− tanh2(ax+ ct)∓ I tanh(ax+ ct) sech(ax+ ct)

)
.

The graphics of this solution are given in figure (1) and (2) for real and imaginary part of
u(x, t) respectively.

Set2{
c =

a

a2 − 1
, A0 =

2a2

a+ 1
, A1 = 0, A2 =

−2a2

a+ 1
, B1 = 0, B2 = ∓ 2Ia2

a+ 1
, I =

√
−1

}
Plugging these values into (17), hence the solution for the Eq.(14) is

u(x, t) =
2a2

a+ 1
sech(ax+ ct) (sech(ax+ ct)∓ I tanh(ax+ ct)) .

The graphics of this solution are similar to those given in figure (1) and (2) for real and
imaginary part of u(x, t) respectively.

Set3 {
c =

a

4a2 − 1
, A0 =

4a2

a+ 1
, A1 = 0, A2 =

−4a2

a+ 1
, B1 = 0, B2 = 0

}
Plugging these values into (17), hence the solution for the Eq.(14) is

u(x, t) =
4a2

a+ 1
sech2(ax+ ct).

The graphic of this solution is similar to that given in figure (1).
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Figure 1. Bell-soliton shape of the real part of u(x, t) for the parameters
a=−1

4 ,c=
4
17 and x=-15..14,t=-10..13.

Figure 2. Kink-soliton shape of the imaginary part of u(x, t) for the pa-
rameters a=−1

4 ,c=
4
17 and x=-15..14,t=-10..13.

Set4 {
c =

−a

4a2 + 1
, A0 =

4a2

3(a+ 1)
, A1 = 0, A2 =

−4a2

a+ 1
, B1 = 0, B2 = 0

}
Plugging these values into (17), hence the solution for the Eq.(14) is

u(x, t) =
−4a2

a+ 1

(
8

3
− sech2(ax+ ct)

)
.

The graphic of this solution is similar to that given in figure (1).

4. The time-fractional nonlinear (2+1)-dimensional
Caudrey-Dodd-Gibbon-Kotera-Sawada equation

Konopelchenko and Dubrovsky proposed the nonlinear (2+1)- Caudrey-Dodd-Gibbon-
Kotera-Sawada equation (CDGKS) [32], in the following form

36ut+uxxxxx+15(uuxx)x+45uxu
2− 5uxxy − 15uuy − 15ux∂

−1
x uy − 5∂−1

x uyy = 0, (20)

where u = u(x, y, t) and ∂−1
x denote integration with respect to x. The Eq.(20) is an

interesting integrable equation that describe large range of nonlinear dispersive physical
contexts and has many application in nonlinear sciences. Some of them are; theory of
conformal field, 2-dimentional gauge field theory of quantum gravity and the conservative
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flow of Liouville equation [33, 34, 35]. When uy = 0, Eq.(20) reduces to the following
(1+1)-dimensional Sawada- Kotera (SK) equation [36]

36ut + uxxxxx + 15(uuxx)x + 45uxu
2 = 0. (21)

The Eq.(21) is a significant nonlinear evolution equation in the context of physical sciences
for describing the motion of long waves in shallow water and has applications in quantum
mechanics and in nonlinear optics.The Eq.(21) is an integrable soliton equation, which has
multisoliton solutions, Bäcklund transformation and it is a member of higher-order KdV
hierarchy [37, 38].

In the last decade, Eq.(20) has been studied by many scientists, and remarkble results
have been obtained from the solutions. For example, Geng used the Riccati equation
method to derive rational solutions and soliton solutions of the CDGKS and SK equations
[39]. Cao et al.worked on the Lax methods to get the equation to integrable ordinary
differantial equation and derived the quasi periodic solution [40]. Wang and Xian derived
the homoclinic breather-wave solutions, periodic wave solutions and kink solitary wave
solutions for the CDGKS equation [41, 42, 43]. The rational solutions and periodic solu-
tions [44] are found by using the tanh method. Applying the Darboux transformation [45]
and Hirota bilinear method to the Eq.(20), give rise to quasi-periodic solutions [46] and
periodic solitary wave solutions [47], respectively.

The time-fractional CDGKS equation, proposed by Sawada and Kotera [48], and also
by Caudrey, Dodd and Gibbon [34, 49], can be written as follows

36Dα
t u+ uxxxxx +15(uuxx)x +45u2ux − 5uxxy − 15uuy − 15ux∂

−1
x uy − 5∂−1

x uyy = 0,
(22)

where 0 < α ≤ 1 is the order of fraction, u = u(x, y, t) and ∂−1
x denote integration with

respect to x. Applying the following wave transformation

u(x, y, t) = U(ξ) , ξ = ax+ by +
ctα

Γ(1 + α)
,

to Eq.(22), which reduces to the following nonlinear ODE

(36c− 5b2)U ′ − 15b(1 + a)UU ′ + 45aU2U ′ − 5a2bU ′′′ + 15a3(UU ′′)′ + a5U ′′′′′ = 0, (23)

where a, b, c are constants and the superscripts in U show the order of derivative with
respect to ξ. Integrating Eq. (23), we get

(36c− 5b2)U − 15

2
b(1 + a)U2 + 15aU3 − 5a2bU ′′ + 15a3UU ′′ + a5U ′′′′ = 0, (24)

where the integration constant is neglegted. Considering the homogeneous balance be-
tween U ′′′′ and U3 terms in Eq.(24), we deduce N = 2, so we write from (10) and (11)
for N = 2

U (ξ) = A0 +B1 sech(ξ) +A1 tanh(ξ) +B2 tanh(ξ) sech(ξ) +A2 tanh
2(ξ), (25)

U (w) = A0 +B1 sin(w) +A1 cos(w) +B2 cos(w) sin(w) +A2 cos
2(w). (26)
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The derivatives of (26)

U ′′(w) = 2 sin2 (w)
(
1− 3 cos2(w)

)
A2 + sin(w) cos(w)(6 cos2(w)− 5)B2

− sin(w) (sin(2w)A1 − cos(2w)B1) , (27)

U ′′′′(w) = 2 sin2(w)
(
15 sin2(2w)− 8

)
A2

+1/2 sin(2w)
(
120 cos4(w)− 180 cos2(w) + 61

)
B2

−4 sin(w) sin(2w)
(
3 cos2(w)− 2

)
A1

+sin(w)
(
24 cos4(w)− 28 cos2(w) + 5

)
B1. (28)

Hence we substitute the values (26) , (27) and (28) into Eq.(24) and set the coefficients of
sinm(w),cosn(w) to zero, we derive the following set of algebraic equations:

C0 : 15a(3B2
2 −A2

2 − 8a4)A2 + 90a3(B2
2 −A2

2) = 0,

C1 : 15a(3A2
2 −B2

2 + 8a4)B2 + 180a3A2B2 = 0,

C2 : 24a5B1 + 120a3(A1B2 +A2B1) + 90aA1A2B2 + 45a(A2
2 −B2

2)B1 = 0,

C3 : 24a5A1 + 120a3(A1A2 −B1B2)− 90aA2B1B2 + 45a(A2
2 −B2

2)A1 = 0,

C4 : 30a2(4a3 − b)A2 +
15

2
(a+ 1)b(B2

2 −A2
2) + 45a[(A2

2 −B2
2)A0 + (A2

1 −B2
1)A2 +A3

2]

: +90a(a2A0A2 −B2
2A2 −A1B1B2) + 30a3(A2

1 −B2
1) + 15a3(10A2

2 − 7B2
2) = 0,

C5 : 30a2(b− 2a3)B2 + [15b(a+ 1)− 165a3]A2B2 − 90a(A0B2 +A1B1)A2

: +15a[3(B2
1 −A2

1) +B2
2 − 6A2

2]B2 − 30a3(3A0B2 + 2A1B1) = 0,

C6 : 10a2(b− 2a3)B1 − 30a(a2 + 3A2)B1A0 + 15(b− 9a3 + ab)A1B2 + 15(b− 7a3

: +ab)A2B1 − 90a(A0 + 2A2)A1B2 + 45a(B2
2 −A2

1)B1 + 15a(B2
1 − 6A2

2)B1 = 0,

C7 : 2a2(5b− 4a3)A1 + 15a[3(B2
1 +B2

2)− (A2
1 + 6A2

2 + 2a2A0)]A1 + 15[2a3

: −b(a+ 1) + 6a(A0 +A2)]B1B2 + 15[b(a+ 1)− 6a(a2 +A0)]A1A2 = 0,

C8 : [5b(4a2 + b)− 36c− 16a5)A2 +
15

2
b(a+ 1)(A2

1 + 2A2
2 −B2

1 −B2
2)

: +15b[(a+ 1)− 4a3]A0A2 + 15a3(B2
1 +B2

2)− 45a[(A0A2 +A2
1)A0 +A3

2

: +(A2 +A0)(B
2
1 +B2

2)]− 30a3(A2
1 + 2A2

2) + 90a(A1B1B2 −A0A
2
2 −A2

1A2) = 0,

C9 : [a5 + 36c− 5b(a2 + b)]B2 + 15[a3 − b(a+ 1)](A0B2 +A1B1 +A2B2)

: +45a(A2
2 +A2

1 +A2
0)B2 + 90a(A0A1B1 +A0A2B2 +A1A2B1) = 0,

C10 : [a5 + 36c− 5b(a2 + b)]B1 + 15[a3 − b(a+ 1)](A0B1 +A1B2 +A2B1)

: +45a(A2
0 +A2

1 +A2
2)B1 + 90a(A0A1B2 +A0A2B1 +A1A2B2) = 0,

C11 : (36c− 5b2)A1 − 15(ab+ b)(A0A1 +A1A2) + 15a(3A2
0 + 6A0A2 +A2

1 + 3A2
2)A1 = 0,

C12 : [36c− 5b2 + 45a(A0A2 +A2
1)](A0 +A2)−

15

2
b(a+ 1)[(A2 +A0)

2 +A2
1]

: +15a(A3
0 +A3

2) = 0.

Solving these equations by using mathematical software program and set a = b = 1, we
get the following set of solutions:

Set1 {
c =

1

4
, A0 = 1, A1 = 0, A2 = −1, B1 = 0, B2 = ∓I, I =

√
−1

}
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Plugging these values into (25), hence the solution for the Eq.(22) is

u(x, y, t) = sech2
(
x+ y +

1

4
t

)
± I tanh

(
x+ y +

1

4
t

)
sech

(
x+ y +

1

4
t

)
.

The graphics of this solution are given in figure (3) and (4) for real and imaginary part
of u(x, y, t) respectively.

Figure 3. Bell-soliton shape of the real part of u(x, y, t) for the parameters
a=1, c=1

4 , and x = -1..1, t = -20..20.

Figure 4. Kink-soliton shape of the imaginary part of u(x, y, t) for the
parameters a=1, c=1

4 , and x = -1..1, t = -20..20.

Set2 {
c =

1

4
, A0 = 2, A1 = 0, A2 = −2, B1 = 0, B2 = 0

}
Plugging these values into (25), hence the solution for the Eq.(22) is

u (x, y, t) = 2 sech2
(
x+ y +

1

4
t

)
.

The graphic of this solution are similar to that given in figure (3).
Set3 {

c =
1

4
, A0 = 2, A1 = 0, A2 = −2, B1 = 0, B2 = 2I, I =

√
−1

}
,{

c =
1

4
, A0 = 2, A1 = 0, A2 = −2, B1 = 0, B2 = −2I, I =

√
−1

}
.

Plugging these values into (25), hence the solution for the Eq.(22) is
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u (x, y, t) = 2 sech2
(
x+ y +

1

4
t

)
± 2I tanh

(
x+ y +

1

4
t

)
sech

(
x+ y +

1

4
t

)
.

The graphics of this solution are similar to those given in figure (3) and (4) for real and
imaginary part of u(x, y, t) respectively.

Set4 {
c =

−67

96
− 5

√
2505

288
, A0 =

5

4
−

√
2505

60
, A1 = 0, A2 = −2, B1 = 0, B2 = 0

}
,{

c =
−67

96
+

5
√
2505

288
, A0 =

5

4
+

√
2505

60
, A1 = 0, A2 = −2, B1 = 0, B2 = 0

}
.

Plugging these values into (25), hence the solution for the Eq.(22) is

u (x, y, t) = −3

4
∓

√
2505

60
+ 2 sech2

(
x+ y +

(
−67

96
∓ 5

√
2505

288

)
t

)
.

The graphic of this solution are similar to that given in figure(3).
Set5{

c =
1

12
−

√
30

36
, A0 = 1−

√
30

15
, A1 = 0, A2 = −1, B1 = 0, B2 = I, I =

√
−1

}
,{

c =
1

12
+

√
30

36
, A0 = 1 +

√
30

15
, A1 = 0, A2 = −1, B1 = 0, B2 = I, I =

√
−1

}
,{

c =
1

12
−

√
30

36
, A0 = 1−

√
30

15
, A1 = 0, A2 = −1, B1 = 0, B2 = −I, I =

√
−1

}
,{

c =
1

12
+

√
30

36
, A0 = 1 +

√
30

15
, A1 = 0, A2 = −1, B1 = 0, B2 = −I, I =

√
−1

}
.

Plugging these values into (25), hence the solution for the Eq.(22) is

u (x, y, t) = ∓
√
30

15
+ sech2

(
x+ y +

(
1

12
∓

√
30

36

)
t

)

+I tanh

(
x+ y +

(
1

12
∓

√
30

36

)
t

)
sech

(
x+ y +

(
1

12
∓

√
30

36

)
t

)
.

The graphics of this solution are similar to those given in figure (3) and (4) for real and
imaginary part of u(x, y, t) respectively.

5. Discussion

Travelling wave solutions play a crucial role in understanding the dynamics of nonlinear
partial differential equations. For the HS, the travelling wave solutions can often be
expressed in terms of hyperbolic functions, such as hyperbolic secant (sech) or hyperbolic
tangent (tanh). The exact form of the solution depends on the specific parameters and
initial conditions of the equation. The travelling wave solutions for the CDGKS equation
can also be expressed in terms of hyperbolic functions. Travelling wave solutions in terms
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of hyperbolic functions have important implications for the dynamics of these equations.
Hyperbolic functions are known for their ability to describe localized structures, such
as solitons and solitary waves. These solutions exhibit interesting properties, such as
stability, preservation of shape, and interactions with other waves. Studying the travelling
wave solutions of the HS and the CDGKS not only provides insights into the behavior
of these specific equations but also contributes to the broader understanding of nonlinear
wave phenomena in physics. The use of hyperbolic functions in expressing these solutions
allows for a concise representation of the wave profiles and facilitates further analysis of
their properties. The solutions obtained in this paper are consistent with the solutions
obtained in [56].

6. Conclusion

In this paper we have exploited the sine-Gordon expansion method in determining new
travelling wave solutions for two time-fractional partial differential equations; the HS and
the CDGKS equations. We have found abundant new exact and hyperbolic solutions,
which can be regarded as fruitful to further comprehend the dynamics of the nonlinear
waves. We used the nonlinear fractional transformation for the nonlinear fractional PDEs
to derive its ODEs. This transformation quaranties the reduction from a given fractional
PDE to ODE, in which the order is integer. Hence the solutions for the HS and the
CDGKS equations are specified by the hyperbolic functions. The presented method is
paved the way for exact and hyperbolic solutions of the FPDEs and it is fruitful, efficient
and powerful method to work with the systems of FPDEs. In the future, researchers may
investigate the specific types of fractional equations for which the Sine-Gordon expansion
method is most effective. They can explore the strengths and limitations of the method
and identify the conditions under which it yields accurate solutions.
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[25] Yeşiltaş, Ö., Baleanu, D., Kurt, A., (2018), Solitons and conservation laws for the time-fractional
Hirota-Satsuma equation, Journal of Mathematical Analysis and Applications, 457(2), 1406-1424.

[26] Jumarie, G., (2006), Modified Riemann-Liouville derivative and fractional Taylor series of nondiffer-
entiable functions further results, Computers & Mathematics with Applications, 51(9-10), 1367-1376.

[27] Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H., (1973), Method for solving the sine-Gordon
equation, Phys. Rev. Lett., 30(25), 1262.

[28] Wang, G., Yang, K., Gu, H., Guan, F., Kara, A.H., (2020), A (2+1)-dimensional sine-Gordon and
sinh-Gordon equations with symmetries and kink wave solutions, Nucl. Phys., B 953, 114956.

[29] Zakharov, V.E., (1974), On stochastization of one-dimensional chains of nonlinear oscillators, Sov.
Phys. JETP., 8, 108-110.

[30] Abazari, R., Abazari, M., (2012), Numerical simulation of generalized Hirota–Satsuma coupled KdV
equation by RDTM and comparison with DTM, Communications in Nonlinear Science and Numerical
Simulation, 17(2), 619-629.

[31] Hietarinta, J., (1997), Introduction to the Hirota bilinear method, In: Kosmann-Schwarzbach, Y.,
Grammaticos, B., Tamizhmani, K.M., editors, Integrability of non- linear systems, Springer, pp. 95-
103.

[32] Konopelchenko, B., Dubrovsky, V., (1984), Some new integrable nonlinear evolution equations in 2+1
dimensions, Phys. Lett. A, 102, 15-17.

[33] Liu, C., Dai, Z., (2008), Exact soliton solutions for the fifth-order Sawada-Kotera equation, Applied
Mathematics and Computation, 206(1), 272-275.

[34] Caudrey, P.J., Dodd, R.K., Gibbon, J.D., (1976), A new hierarchy of Korteweg-de Vries equations, P.
Roy.Soc. A-Math. Phy., 351, 407-422.

[35] Lou, S.Y., (1994), Abundant symmetries for the 1+1 dimensional classical Liouville field theory, J.
Math.Phys., 35, 2336-2348.
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