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STUDY OF SOME EVOLUTION EQUATIONS INVOLVING RIESZ

FRACTIONAL DERIVATIVE WITH SINGULAR INITIAL DATA

M. CHAIB1∗, A. TAQBIBT1, M. ELOMARI1, S. MELLIANI1, §

Abstract. The objective of this work is to study some evolution problems involving
the Riesz fractional derivative with singular initial data which can be distributions. It is
a question of proving the existence and uniqueness of the solutions of these problems in
the extended Colombeau algebra Ge

R . It is established that the existence and uniqueness
generalized solutions hold for both evolution problems associated to the Schrödinger
equation and the heat equation involving the corresponding Riesz fractiononal operators
derivatives.
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1. Introduction

The objective of this research is to study some evolution problems involving the Riesz
fractional derivative with singular initial data. More precisely, it is a question of proving
the existence and uniqueness of the solutions of these problems in the extended Ge of
Colombeau algebra. In Colombeau-type regularization methods, the basic concept is to
represent nonsmooth objects by means of smooth function nets. These nets may or may not
converge, but possess mild asymptotics, and regularizing nets are identified by minimizing
the discrepancy with the moderateness scale. The equivalence classes of regularization
moderates nets with respect a negligible nets are called elements of Colombeau algebra, i.e.
sequences of smooth functions satisfying conditions of asymptotically in the regularization
parameter ε, the reader can see [6, 8]. In physics, fractional calculus is a useful tool for
analyzing nonlocal and memory effects [12]. This is followed by successful applications of
anomalous diffusion and evolution problems [17, 18]. In the literature, more precisely in
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recent years many researchers have begin to focus on as an interesting and popular tool
to the fractional derivative theory, since it model many phenomena in various fields of
engineering, physics, and economics. Often found in viscoelastic, electrochemical, control,
porous media, electromagnetic, see [11, 13] and the references therein. The fractional
evolution problem Dαµ = Aµ , m − 1 < α ≤ m, m ∈ N0 has been studied in [2],
they provides necessary and sufficient conditions for solving this problem with A is an
unbounded closed operator in Banach space X. In order to reduce the Cauchy problem
for a linear inhomogeneous partial differential equation to the Cauchy problem for the
corresponding homogeneous equation, the authors in [21] used the well known Duhamel’s
principle, in their paper one of the possible generalizations of the classical Duhamel’s
principle to the time-fractional pseudo-differential equations is established, all this with the
usual functions which do not pose problems of singularities, or of product see [4, 10]. But
this method remains invalid for systems carrying a product of two distributions, which we
have treated here. The authors in [19] provide a method for dealing fractional differential
equations including singularities, based on Colombeau’s theory of generalized functions,
more generally they gives an extension of Colombeau’s algebra to fractional derivatives.
In [5] the existence and uniqueness of solutions for an abstract Caputo type fractional
evolution problem with generalized real numbers in the initial conditions is given, more
precisely, mild solutions of our proposed model is constructed by using Laplace transform
and a density function.

Also in [1] authors study the existence and uniqueness of generalized mild solutions
only for nonlinear Schrödinger equations with singular initial conditions but juste in a
simple Colombeau algebras of generalized functions, by the semigroup theory, in this
context, there are many articles dealing with this type of problem; the reader can see
[3, 5, 7, 9, 16, 20] and the references therein. Our idea is inspired from here, this time
with the fractional operator of Riesz derivative. We apply it to solving some PDEs with
fractional derivatives in terms of time and space variables, we have studied the existence
and uniqueness results. For this, we start to show that a specific representation of the Riesz
derivative that allows analytic continuation can be used to evaluate the integral equation,
thus resolving the so-called inconsistency issue. This paper is structured as follows. In
Section 2, we review Colombeau’s theory. Section 3 is particularly interested to regularize
the Riesz fractional derivative to use it to study some generalized evolution problems,
which includes both heat equation and Schrödinger nonlinear problem as application.

2. Preliminairies

In this section, we will review some basic properties of generalized functions theory in
colombeau sense. Let n ∈ N0, we note

E(Rn) =
(
C∞ (Rn)

)(0,1)
.

The set of all moderate functions is given as follows

EM (Rn) =
{
(µϵ)ϵ ⊂ E(Rn), ∀K ⊂ Rn, ∀α ∈ Nn

0 , ∃N ∈ N, sup
x∈K

|∂αµϵ(x)| = Oϵ→0(ϵ
−N )

}
.

The ideal of negligible functions is defined by

N (Rn) =
{
(µϵ)ϵ ⊂ E(Rn), ∀K ⊂ Rn, ∀α ∈ Nn

0 ,∀p ∈ N, sup
x∈K

|∂αµϵ(x)| = Oϵ→0(ϵ
p)
}
.

The Colombeau algebra is defined as a factor set

G(Rn) = EM (Rn)/N (Rn).
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The ring of all generalized real numbers is given by the following set

R̃ = E (R) /I (R) ,

where

E(R) =
{
(xϵ)ϵ ∈ (R)(0,1), ∃m ∈ N, |xϵ| = Oϵ→0(ϵ

−m)
}
,

and

I(R) =
{
(xϵ)ϵ ∈ (R)(0,1), ∀m ∈ N, |xϵ| = Oϵ→0(ϵ

m)
}
.

The ring R̃ is formed by factoring moderate sets of real numbers with respect to negligible
sets, algebra E(R) contains the ideal I(R). The space of distributions with compact
support E ′(Ω) is embedded into G(Ω), whre Ω is an open subset of Rn through convolution

i :

{
E ′(Ω) → G(Ω)

ω → (ω ∗ (ϕϵ)/Ω)ϵ∈(0,1) +N (Ω),

where

ϕϵ(x) = ϵ−nϕ(
x

ϵ
), ϕ ∈ C∞

0 (Ω), ϕ(x) ≥ 0,

∫
Ω
ϕ = 1,

∫
Ω
xαϕ = 0,∀α ∈ Ω, |α| > 0 (1)

is obtained by scaling a fixed test function in S(Rn) of integral one and with all higher
order moments are zero. By the sheaf property, i can be extended in a unique way
to an embedding from the space of distributions D′(Ω) into Colombeau algebra G(Ω).
The extended Colombeau algebra of generalized functions Ge(Ω) on the open set Ω of
Rn is defined in the sense of the extension of integer derivatives to a fraction those first
introduced by M. Stojanovic see [19] for details. Let E(Ω) be the algebra of all sequences
(µϵ)ϵ>0 of real valued functions, µϵ ∈ C∞(Ω). The algebra of extended moderate functions
is given by

Ee
M (Ω) =

{
(µϵ)ϵ ∈ (E(Ω))I , ∀K ⊂ R,∀α ∈ R+, ∃N ∈ N,

sup
x∈K

|Dαµϵ(x)| = Oϵ→0(ϵ
−N )

}
,

and the set of negligeable functions is defined by

N e(Ω) =
{
(µϵ)ϵ ∈ (E(Ω))I ,∀K ⊂ R,∀α ∈ R+, ∀q ∈ N,

sup
x∈K

|Dαµϵ(x)| = Oϵ→0(ϵ
q)
}
.

The extended Colombeau algebra Ge(Ω) is given by the factor algebras

Ge(Ω) = Ee
M (Ω)/N e(Ω).

Where, m−1 < α ≤ m, m ∈ N and Dα is the Caputo fractional derivative, which defined
(see [14]), for suitably smooth function. For the fractiaonal derivatives and fractional inte-
gral, we can see [15] and the references therein. Embedding of the Schwartz distributions
space S ′(Rn) into Ge

τ (Rn) is given by ω → [(ω ∗ ϕϵ)ϵ∈I ], more detail about the space can
be found in [19].
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3. Main results

We begin this section by embedding the Riesz fractional derivative into extended Colombeau
algebra Ge

r described below. Let µ = [(µϵ)ϵ] ∈ Ge
r , for any ϵ ∈ (0, 1) and K is a compact of

R, we have

|Rαµϵ(t, x)| ≤ 1

Γ(1− α)

∫ +∞

−∞

|µ′
ϵ(t, ξ)|

|x− ξ|α
dξ, for α ∈ (0, 1) (2)

sup
x∈K

|Rαµϵ(t, x)| ≤ 1

Γ(1− α)
sup
x∈K

∫ +∞

−∞

|µ′
ϵ(t, ξ)|

|x− ξ|α
dξ

≤ 1

Γ(1− α)
sup
x∈K

|µ′
ϵ(t, ξ)|

∫ +∞

−∞

1

|x− ξ|α
dξ.

We can write, ∫ +∞

−∞

dξ

|x− ξ|α
=

∫ c

−∞

dξ

|x− ξ|α
+

∫ +∞

c

dξ

|x− ξ|α
,

where c is a nonegative constant. Since the second integral in the last equality is not
converges at infinity because α ∈ (0, 1), hence the fractional Riesz derivative Rα given
in (2) has not a moderate bounds, for this reason we regularize this definition with the
convolution method by a well-chosen molifier

(
|x|−α ∗ ϕϵ(x)

)
, where ϕϵ is given in (1).

Note that we regularize only derivatives with respect to the spacial variable to preserve
the evolution-type of equations.

R̃αµϵ(t, x) =
1

Γ(1− α)

(
µ′
ϵ(t, x) ∗ |x|−α ∗ ϕϵ(x)

)
(t, x) α, ϵ ∈ (0, 1). (3)

Proposition 3.1. The Riesz fractional derivative Rαµϵ and its regularized R̃αµϵ are as-
sociated in the Colombeau algebra.

Proof. We have to prove that

|R̃αµϵ −Rαµϵ| ≈ 0.

By substracting (2) and (3), we can write

sup
x∈R

|R̃αµϵ(t, x)−Rαµϵ(t, x)|

=
1

Γ(1− α)
sup
x∈R

(
(µ′

ϵ(t, x) ∗ |x|−α − µ′
ϵ(t, x)

)
=

1

Γ(1− α)
sup
x∈R

(
|(µ′

ϵ(t, x) ∗ |x|−α)(t, x)| ∗ |ϕϵ(x)− δ(x)|
)
.

Since the sequence (ϕϵ)ϵ converges to the delta distribution δ in the Schwartz distributions

space D′ as ϵ → 0, we have lim
ϵ→0

|ϕϵ(x)− δ(x)| = 0, hence R̃αµϵ ≈ Rαµϵ. □

Proposition 3.2. The regularization of Riesz fractional derivative has a moderate bound.
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Proof. We have,

R̃αµϵ(t, x) =
1

Γ(1− α)

[
µ′
ϵ(t, x) ∗

(
|x|−α ∗ ϕϵ(x)

)
(t, x)

]
=

1

Γ(1− α)

∫ +∞

−∞
µ′
ϵ(t, x− y)

(
|y|−α ∗ ϕϵ(y)

)
dy

=
1

Γ(1− α)

∫ +∞

−∞
µ′
ϵ(t, x− y)

( ∫ +∞

−∞
|y −m|−αϕϵ(m)dm

)
dy

=
1

Γ(1− α)

∫ +∞

−∞
µ′
ϵ(t, x− y)

( ∫ +∞

−∞
|y − ϵl|−αϕ(l)dl

)
dy,

we get,

|R̃αµϵ(t, x)| ≤
1

Γ(1− α)

∫ +∞

−∞
µ′
ϵ(t, x− y)

(
sup

l∈[−M,M ]
|ϕ(l)|1

ϵ

∫ y+ϵM

y−ϵx
|σ|−αdσ

)
dy

≤ 1

Γ(1− α)
sup

y∈[−M,M ]
|µ′

ϵ(t, y)|

(
sup

l∈[−M,M ]
|ϕ(l)|

)

×
∫ 2M

0
|1
ϵ

∫ y+ϵM

y−ϵM
|σ|−αdσ|dy

≤ 1

Γ(2− α)
sup

y∈[−M,M ]
|µ′

ϵ(t, y)|

(
sup

l∈[−M,M ]
|ϕ(l)|

)

×
∫ 2M

0

1

ϵ

(
|y + ϵM |1−α − |y − ϵM |1−α

)
dy

≤ 1

Γ(3− α)
sup

y∈[−M,M ]
|µ′

ϵ(t, y)|
1

ϵ2
sup

l∈[−M,M ]
|ϕ(l)|

×
[
|y + ϵM |2−α − |y − ϵM |2−α

]2M
0

≤ 1

Γ(3− α)

1

ϵ2
sup

y∈[−M,M ]
|µ′

ϵ(t, y)| sup
l∈[−M,M ]

|ϕ(l)|ϵ2−αM2−α

≤ 1

Γ(3− α)

1

ϵ2
sup

y∈[−M,M ]
|µ′

ϵ(t, y)|Cα,ϕϵ
−αM2−α

≤ Cα,ϕM
2−αϵ−αCϵ−N1 .

Hence,

sup
x∈R

|R̃αµϵ(t, x)| ≤ Cα,ϕK
2−αCϵ−N , where 0 < M < K, Cα,ϕ > 0, α ∈ (0, 1).

The last inequality gives the desired result for the zero order derivative, the proof for higher
order derivatives is similar thanks to the Liebniz formula, which ends the proof. □

More general if α is a real number such that m − 1 < α ≤ m, with m is an integer
number the Riesz fractional derivative of order α is defined by

Rαµϵ(t, x) =
1

Γ(m− α)

∫ +∞

−∞

u(m)(t, ξ)

|x− ξ|α+1−m
dξ.
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By the result proving in the two Propositions 3.1 and 3.2, we can defined the new
corresponding class of Colombeau algebra Ge

r(Ω) by

Ge
R(Ω) = Ee

M,R(Ω)/N e
R(Ω),

where the set of moderate functions is given by

Ee
M,R(Ω) =

{
(µϵ)ϵ ∈ (E)I , ∀K ⊂ R,∀α ∈ R+, ∃N ∈ N,

sup
x∈K

|R̃αµϵ(x)| = Oϵ→0(ϵ
−N )

}
,

and the set of negligeable functions is defined by

N e
R(Ω) =

{
(µϵ)ϵ ∈ (E(Ω))I , ∀K ⊂ R,∀α ∈ R+, ∀q ∈ N,

sup
x∈K

|R̃αµϵ(x)| = Oϵ→0(ϵ
q)
}
.

In order to study the abstract Cauchy problem associate to this construction,{
µ′(t) = F (t, µ(t)),

µ(0) = µ0,
(4)

we need to define the corrsponding extension algebra of generalized temered functions by

Ge
τ,R(Rn) = Ee

τ,R(Rn)/N e
τ,R(Rn), (5)

with

Ee
τ,R(Ω) =

{
(µϵ)ϵ ∈ (E)I ,∀K ⊂ R, ∀α ∈ R+, ∃N ∈ N,

sup
x∈K

|(1 + |x|)−N R̃αµϵ(x)| = Oϵ→0(ϵ
−N )

}
,

and

N e
τ,R(Ω) =

{
(µϵ)ϵ ∈ (E)I , ∀K ⊂ R,∀α ∈ R+, ∃N ∈ N, ∀q ≥ 0,

sup
x∈K

|(1 + |x|)−N R̃αµϵ(x)| = Oϵ→0(ϵ
q)
}
.

In [19] the authors constructed a generalized solution to the system of equations (4)
in the frame of the extended Colombeau algebra of tempered generalized functions Gτ .
It is proved in [19] the existence and uniqueness results for the system (4) for fractional

derivative. When α ∈ (0, 1), if F ∈ G̃τ (Rn+1), such that |∇xF | ≤ C | log ϵ|, problem (4)

has a unique solution µ ∈ G̃(Rn). We will prove that the same is true in the extended
algebra of generalized functions Ge

R(Rn), introduced in this work

Theorem 3.1. Let F ∈ Ge
τ,R(Rn+1), assume that |∇xF | ≤ C| log ϵ|. For any given µ0 ∈

R̃n, the problem (4) has a unique solution in the extended Colombeau algebra G̃e
R(R)n.

Proof. Consider the regulariwed Riesz fractional derivative R̃α, m − 1 < α ≤ m m ∈ N0,
without loss of generality, we assume that 0 < α < 1. We apply the regularized fractional
Riesz derivative to the representative of the problem (4), we obtain

R̃αµ′
ϵ(t) = R̃αFϵ(t, µϵ(t)), µϵ(0) = µ0,ϵ,

For approximation reasons of F , we will have

R̃αµ′
ϵ(t) = R̃αFϵ(t, 0) + |∇xF |.R̃αµϵ(t) +Nϵ(t),
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where (Nϵ(t))ϵ ∈ Ge
R(R)n. Integrating from 0 to t it yields∫ t

0
R̃αµ′

ϵ(s)ds =

∫ t

0
R̃αFϵ(s, 0) + |∇xF |.R̃αµϵ(s) +Nϵ(s)ds,

and thus,

R̃αµϵ(t) = R̃αµ0,ϵ +

∫ t

0
R̃αFϵ(s, 0)ds+ |∇xF |

∫ t

0
R̃αµϵ(s)ds+

∫ t

0
Nϵ(s)ds,

By Gronwall inequality, we have

|R̃αµϵ(t)| ≤
(
CT ϵ

−N
)
e−T log ϵ ≤ C ϵ−N , (6)

which shows that (µϵ)ϵ is moderate. To prove uniqueness, consider two solutions (µ1,ϵ)ϵ
and (µ2,ϵ)ϵ to the regularized equation (4), and let their difference be denoted by Hϵ =
µ1,ϵ − µ2,ϵ. By subtracting these two equations, we can derive the following estimation

|R̃αH′
ϵ(t)| ≤ | log ϵ||R̃αHϵ(t)| ≤ | log ϵ|

∫ t

0

∣∣∣ H′
ϵ(s)

(t− s)α

∣∣∣ds
By integration over the interval [0, t] and the Gronwall Lemma, we obtain |R̃αHϵ(t)| ≤ 0,

then
∣∣∣ ∫ t

0

H′
ϵ(s)

(t− s)α
ds
∣∣∣ ≤ 0. Hence,

sup
s∈[0,T ]

|H′
ϵ(s)| ≈ 0.

Then (µ′
1,ϵ)ϵ ≈ (µ′

2,ϵ)ϵ, and by integration, we get (µ1,ϵ)ϵ ≈ (µ2,ϵ)ϵ. Since the initial
conditions are the same, then the uniqueness holds. □

Now, we turn out to study the existence and uniqueness solution of the heat equation
in Ge

R([0, T ]× Rn). Let us consider the following problem{
∂tµ(t, x) = ∆µ(t, x) + g(µ(t, x)) µ ∈ Ge

R([0, T )× Rn),

µ(0, x) = δ(x),
(7)

where g(µ) ∈ L∞
loc([0, T ],Rn). To study this problem (7) we need the following rgulariza-

tions

δϵ(x) = | ln ϵ|anϕ(x| ln ϵ|), ∥ ∇gϵ(µϵ) ∥L∞≤ | ln ϵ|b.

Theorem 3.2. Let g ∈ L∞
loc

(
[0, T ],Rn

)
, satisfying ∥ ∇gϵ(µϵ) ∥L∞≤ | ln ϵ|b the problem (7)

has a unique solution in the extension Ge
R([0, T ]× Rn).

Proof Let us consider the reqularization problem{
∂tµϵ(t, x) = ∆µϵ(t, x) + gϵ(µϵ(t, x))

µϵ(0, x) = δϵ(x),
(8)

associated to the problem (7). The integrale form of the equation (8) is given by the
Duhamel extension as follows

µϵ(t, x) = En,ϵ(t, x) ∗ µ0,ϵ(x) +

∫ t

0

∫
Rn

En,ϵ(t− τ, x− ξ)gϵ(µϵ(τ, x))dξdτ. (9)
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Where En,ϵ is the heat kernel. The rest of the proof is presented in four steps
Step 1. By taking the norm in the (9), and thank’s to Hölder inequality, it follows that

∥ µϵ(t, .) ∥L∞ ≤ ∥ En,ϵ(t, x) ∥L∞∥ µ0,ϵ ∥

+

∫ t

0

[
∥ En,ϵ(t− τ, .) ∥L∞∥ ∇gϵ(µϵ(θµϵ)) ∥L∞∥ µϵ ∥L∞

]
dτ

≤ C| ln ϵ|an +

∫ t

0
c| ln ϵ|b ∥ µϵ(t, .) ∥L∞ dτ. (10)

Now, we use the Gronowall lemma, it yields

∥ µϵ(t, .) ∥L∞ ≤ C|lϵ|an exp(cT (| ln ϵ|)b)
≤ Cϵ−N , where N > 0, t ∈ [0, T ], ϵ ∈ (0, 1),

which shows that the family (µϵ)ϵ∈(0,1) is moderate.
Step 2. In this step, we proves the moderateness for the first derivative, we write

∂xµϵ(t, x) =

∫
Rn

En,ϵ(t, x)∂ξµ0,ϵ(ξ)dξ +

∫ t

0

∫
Rn

∂xEn,ϵ(t− τ, x− ξ)gϵ(µϵ(τ, x))dξdτ.

By taking the norm and the abouve regularization, it yields

∥ ∂xµϵ(t, .) ∥L∞ ≤ C| ln ϵ|an−1 + c1

∫ t

0
| ln ϵ|b ∥ µϵ(τ, .) ∥L∞ dτ

≤ C2 ϵ
−N , where N > 0, t ∈ [0, T ), ϵ ∈ (0, 1),

since (µϵ)ϵ is moderate, we can write

∥ ∂xµϵ(t, .) ∥L∞ ≤ C| ln ϵ|an−1
(
c1T | ln ϵ|b

)
≤ C ϵ−N where N > 0, t ∈ [0, T ), ϵ ∈ (0, 1),

therefore (∂xµϵ)ϵ is moderate.
Step 3. Applying the Riesz fractionnal derivative in the equality (9)it yields

R̃αµϵ(t, x) = En,ϵ(t, x) ∗ R̃αµ0,ϵ(x) +

∫ t

0

∫
Rn

En,ϵ(t− τ, x− ξ)gϵ(R̃
αµϵ(τ, x))dξdτ.

R̃αµϵ(t, x) = En,ϵ(t, x) ∗ R̃αµ0,ϵ(x) +

∫ t

0

∫
Rn

En,ϵ(t− τ, x− ξ)∇gϵ(θµϵ)R̃
αµϵ(τ, x)dξdτ,

with θ ∈ (0, 1), and by using the moderateness of (µϵ)ϵ, we obtain

∥ R̃αµϵ(t, x) ∥ ≤ ∥ En,ϵ(t, x) ∥L1 ∥ R̃αµ0,ϵ ∥L1

+

∫ t

0
∥ En,ϵ(t− τ, x− .) ∥L∞∥ ∇gϵ(θµϵ) ∥L∞∥ R̃αµϵ(τ, .) ∥L∞ dτ,

≤ CM4−α−n
ϕ + cT M4−α−n

ϕ (| ln ϵ|)bϵ−N

≤ Cα,ϕ ϵ
−N ,with N > 0 and Cα,ϕ is a nonegative constant.

By these three steps above, we can see that regularized of the Riesez fractional derivative
of the solution µϵ is an element of the algebra Ee

M,R([0, T ]× Rn).
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step 4. Let us consider Hϵ(t, x) = µ1,ϵ(t, x) − µ2,ϵ(t, x), where (µ1,ϵ)ϵ, (µ2,ϵ)ϵ are two
solutions of the equation (8), we can write{

∂tHϵ(t, x) = ∆Hϵ(t, x) + gϵ(µ1,ϵ(t, x))− gϵ(µ2,ϵ(t, x)) +Nϵ(t, x),

Hϵ(0, x) = N0,ϵ(x) = Nϵ(0, x) ∈ N e
R(Rn),

(11)

with (Nϵ(t, x))ϵ ∈ N e
R([0, T ]× Rn)

Now, by applying the Riesz fractional derivative we get

∥ R̃αHϵ(t, .) ∥L∞ ≤ ∥ Enϵ(t, x− .) ∥L1∥ R̃αN0ϵ ∥L∞

+

∫ t

0
∥ Enϵ(t, x− .) ∥L1∥ Hϵ(τ, .) ∥L∞∥ R̃αHϵ(τ, .) ∥L∞ dτ

+

∫ t

0
∥ Enϵ(t, x− .) ∥L1∥ R̃αNϵ(τ, .) ∥L∞ dτ

≤ C1ϵ
q + C2T (| ln ϵ|)bϵ−N + ϵ−N

≤ C̃ϵN1 , for any N1 > 0.

Hence,
(
R̃αHϵ(t, x)

)
ϵ
∈ N e

R

(
[0, T ]× Rn

)
.

In the sequel, we will interesting to study existence and uniqueness solution of of the
Schrödinger equation in Ge

R([0, T ]×Rn). Consider the nonlinear problem associated with
Schrödinger equation with potential and initial data are singulars{

1
i ∂tµ(t, x)−△µ(t, x) + ν(x)µ(t, x) = 0

ν(x) = δ(x), µ(0, x) = δ(x).
(12)

We will use later the following Dirac measure regularization

νϵ(x) = δϵ(x) = (ϕϵ(x)) = | ln ϵ|cnϕ(x| ln ϵ|c), c > 0.

with x ∈ Rn and ϕ ∈ S(R), satisfying conditions (1) and for the initial condition, we use
the following regularization

µ0,ϵ(x) = | ln ϵ|anϕ(x| ln ϵ|a), a > 0.

To give the result about the embedding of Schrödinger equation into Ge
R([0, T ) × Rn],

we need to

Lemma 3.1. The regularization of the previous problem is written by{
1
i ∂tµϵ(t, x)−△µϵ(t, x) + νϵ(x)µϵ(t, x) = 0

νϵ(x) = δϵ(x), µ0,ϵ(x) = δϵ(x)
(13)

with νϵ and µ0,ϵ are the regularizations of ν and µ0 respectively. Hence , the problem (12)
has a unique solution in G([0, T ]× Rn).

Proof. The integral solution to the regularized problem (13) is given by

µϵ(t, x) =

∫
Rn

Sn(t, x− y)µ0,ϵ(y)dy +

∫ t

0

∫
Rn

Sn(t− τ, x− y)νϵ(y)µϵ(τ, y)dydτ (14)

with Sn(t, x) the Schrödinger kernel see [16] and the references therein.
The author in [20] proves that the integral solution (14) satisfy the following inequalities

∥ µϵ(t, .) ∥L∞(Rn) ≤ C| ln ϵ|an exp(CT | ln ϵ|bn)
≤ Cϵ−N where C > 0, and N > 0

and for higher order derivatives, we have
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∥ ∂xiµϵ(t, .) ∥L∞(Rn)≤ C
(
| ln ϵ|a(n+1) + T | ln ϵ|b(n+1) ∥ µϵ ∥L∞

)
exp(CT | ln ϵ|bn).

And according to the previous step, there exists N > 0 such that

||∂xiµϵ(t, .)||L∞ ≤ Cϵ−N .

We showed also that for the second derivative of xi, j ∈ {1, ..., n}, we obtain

∥ ∂xi∂xjµϵ(t, .) ∥L∞ ≤ C
(
| ln ϵ|a(n+2) + | ln ϵ|b(n+1) ∥ µϵ ∥L∞

+ | ln ϵ|b(n+1) ∥ ∂yiµϵ ∥L∞

+ | ln ϵ|b(n+1) ∥ ∂yjµϵ ∥L∞

)
eCT | ln ϵ|bn

And thus there exists N > 0 such that

∥ ∂xi∂xjµϵ(t, .) ∥L∞(Rn)≤ Cϵ−N

which showed the existence of the solution of the nonlinear problem (12) of Schrödinger
in the classical Colombeau algebra G([0, T ]× Rn). □

Now, we are going to prouve the existence and uniqueness of the solution in the extension
Ge
R([0, T ]× Rn) of Colombeau algebra.

Theorem 3.3. Under the assumptions of the previous proposition the problem (12) has a
unique solution in Ge

R([0, T ]× Rn).

Proof. In the last Lemma, we have proved that entieres derivatives of µϵ are moderates in
the classical algebras G([0, T ] × Rn), to show theorem, it suffices to prove that the Riesz

fractional derivatives (R̃αµϵ)ϵ with α ∈ (m− 1,m), m ∈ N0 are moderates.
Without loss of generality, we have to proves that for all 0 < α < 1, we have

||R̃αµϵ(t, .) = O(ϵ−N ),

We apply the regularized Riesz fractional derivative with respect to the spatial variable
x to (14)

R̃αµϵ(t, x) =

∫
Rn

Sn(t, x− y)R̃αµ0,ϵ(y)dy

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)R̃ανϵ(y)µϵ(τ, y)dydτ

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)νϵ(y)R̃
αµϵ(τ, y)dydτ

∥ R̃αµϵ(t, .) ∥L∞ ≤ ||Sn(t, x− .) ∥L1∥ R̃αµ0,ϵ ∥L∞

+ ∥ Sn(t− τ, x− .) ∥L1

∫ t

0
∥ R̃ανϵ ∥L∞∥ µϵ(τ, .) ∥L∞ dτ

+ ∥ Sn(t− τ, x− .) ∥L1

∫ t

0
∥ νϵ(y) ∥L∞∥ R̃αµϵ(τ, .) ∥L∞ dτ
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∥ R̃αµϵ(t, .) ∥L∞ ≤ C
(
∥ R̃αµ0,ϵ ∥L∞ +T ∥ R̃ανϵ ∥L∞ ||µϵ ∥L∞

)
+ C ∥ νϵ(.) ∥L∞

∫ t

0
∥ R̃αµϵ(τ, .) ∥L∞ dτ.

Again the Gronwall inequality, gives the answer to our problem

∥ R̃αµϵ(t, .) ∥L∞ ≤ C exp
(
CT ∥ νϵ ∥L∞

)
(
∥ R̃αµ0,ϵ ∥L∞(Rn) +T ∥ R̃ανϵ ∥L∞(Rn)∥ µϵ ∥L∞

)
.

Hence,

∥ R̃αµϵ(t, .) ∥L∞ ≤ C exp
(
CT ∥ νϵ ∥L∞

)
(
Cα,T | ln ϵ|a(n+1) + TCα,T | ln ϵ|b(n+1) ∥ µϵ ∥L∞

)
,

there exists N > 0 and C > 0 such that

∥ R̃αµϵ(t, .) ∥L∞(Rn)≤ Cϵ−N .

And thus,

(µϵ)ϵ ∈ Ee
M,R([0, T ]× Rn)

In order to proves uniqness of the solution, we apply the Riesz fractional derivative R̃α,
α ∈ (0, 1) to the integral solution (14) and if Hϵ denotes the difference µ1,ϵ−µ2,ϵ, it yields

R̃αHϵ(t, x) =

∫
Rn

Sn(t, x− y)R̃αN0,ϵ(y)dy

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)R̃ανϵ(y)Hϵ(τ, y)dydτ

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)νϵ(y)R̃
αHϵ(τ, y)dydτ

+

∫ t

0

∫
Rn

Sn(t− τ, x− y)R̃αNϵ(τ, y)dydτ,

∥ R̃αHϵ(t, .) ∥L∞ ≤ ∥ Sn(t, x− .) ∥L1∥ R̃αN0,ϵ ∥L∞

+ ∥ Sn(t− τ, x− .) ∥L1

∫ t

0
∥ R̃ανϵ ∥L∞∥ Hϵ(τ, .) ∥L∞ dτ

+ ∥ Sn(t− τ, x− .) ∥L1

∫ t

0
∥ νϵ(.) ∥L∞∥ R̃α(µ1ϵ(τ, .)

− µ2ϵ(τ, .)) ∥L∞ dτ

+ ∥ Sn(t− τ, x− .) ∥L1

∫ t

0
∥ R̃αNϵ(τ, .) ∥L∞ dτ
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∥ R̃α(µ1,ϵ(t, .)− µ2,ϵ(t, .)) ∥L∞ ≤ C
(
∥ N0,ϵ ∥L∞ +T ∥ R̃ανϵ(.) ∥L∞ ×

∥ µ1ϵ − µ2ϵ ∥L∞ + ∥ R̃αNϵ ∥L∞

)
+C ∥ νϵ ∥L∞ ×∫ t

0
∥ R̃α(µ1ϵ(τ, .)− µ2ϵ(τ, .)) ∥L∞ dτ.

By Gronwall inequality, we have

∥ R̃α(µ1,ϵ(t, .)− µ2,ϵ(t, .)) ∥L∞ ≤ C
(
∥ N0,ϵ ∥L∞ +T ∥ R̃ανϵ ∥L∞ ×

∥ µ1ϵ − µ2ϵ ∥L∞ + ∥ R̃αNϵ ∥L∞

)
×

exp
(
CT ∥ νϵ ∥L∞

)
.

Thus
∥ R̃α(µ1,ϵ(t, .)− µ2,ϵ(t, .)) ∥L∞≤ Cϵq, for all q.

Hence,
µ− ν ∈ N e

R([0, T ]× Rn),

which end the proof of theorem. □

4. Conclusions

The primary aim was to establish the existence and uniqueness of solutions for these
problems within the framework of the extended Ge

R of Colombeau algebra. Through rigor-
ous analysis and mathematical reasoning, it has been successfully demonstrated that both
the Schrödinger equation and the heat equation, encompassing their respective evolution
problems, admit generalized solutions that exhibit existence and uniqueness.

Acknowledgement. We are deeply grateful to all those who contributed to the success
of this research paper.
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