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A CONVEX HULL BASED ALGORITHM FOR SOLVING THE

TRAVELING SALESMAN PROBLEM

F. NURIYEVA1,2∗, H. KUTUCU 3, §

Abstract. This paper introduces a new algorithm for solving the Traveling Salesman
Problem, based on the convex hull. The proposed algorithm has two versions, in the first
version, starting from the vertices farthest from the center, unselected vertices are suc-
cessively added to the current tour and in the second version, starting from the vertices
closest to the center, unselected vertices are successively added to the current tour. The
proposed algorithm has been implemented in the Python programming language, and
computational experiments have been conducted on library problems of varying dimen-
sions. The obtained results are compared with well-known algorithms, demonstrating
the efficiency of the proposed algorithm. The results of these experiments demonstrate
the effectiveness and efficiency of the proposed algorithm.

Keywords: traveling salesman problem, insertion heuristic, convex hull, nearest neigh-
bor, greedy algorithm.
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1. Introduction

The Traveling Salesman Problem (TSP) is a well known optimization problem. TSP
is a combinatorial optimization problem that seeks to find the most efficient route for a
salesman who needs to visit a set of cities exactly once and return to the starting city while
minimizing the total distance or cost traveled [2, 3, 4, 9]. Despite its seemingly simple
description, solving the TSP is a challenging task as it belongs to the class of NP-hard
problems [4, 8, 9, 11]. Given n is the number of cities to be visited, the total number of
possible routes covering all cities can be given as a set of feasible solutions of the TSP and

is given as (n−1)!
2 .

The TSP can be classified into three main categories: the Symmetric Traveling Salesman
Problem (sTSP), the Asymmetric Traveling Salesman Problem (aTSP), and the Multi-
Traveling Salesman Problem (mTSP) [15].

sTSP: In the Symmetric Traveling Salesman Problem (sTSP), consider a set of cities
represented by V = {v1, . . . , vn}, with the edge set E = {(i, j) : i, j ∈ V }, and let cij = cji
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denote a cost of traveling associated with the edge (i, j) ∈ E. The objective of sTSP is
to identify the shortest closed tour that visits each city exactly once. In this scenario, the
cities, represented by vi ∈ V , are defined by their coordinates (xi, yi), and if cij corresponds
to the Euclidean distance between cities i and j, we refer to it as an Euclidean TSP [8].

aTSP: In the Asymmetric Traveling Salesman Problem (aTSP), the distinction lies in
the fact that if the cost of traveling cij is not equal to cji for at least one pair (i, j), then
the TSP transforms into an aTSP [2].

mTSP: The Multi-Traveling Salesman Problem (mTSP) is defined as follows: within
a given set of vertices, there exist m salesmen stationed at a central depot vertex. The
remaining vertices, designated as cities, serve as intermediate vertices to be visited. The
objective of the mTSP is to determine tours for all m salesmen, each starting and ending
at the depot. Every intermediate vertex must be visited exactly once, aiming to minimize
the total cost associated with visiting all vertices. The cost metric can include factors such
as distance, time, etc. Several variations of the mTSP exist, introducing complexities to
the problem [3].

This problem is not only of theoretical interest but also has numerous practical appli-
cations in logistics, transportation, and network design, making it a fundamental topic in
the field of optimization and computational mathematics [10].

In this paper, we proposed a new algorithm based on convex hull for solving symmetric
TSP.

The rest of the paper is organized as follows: Section 2 outlines the definition and math-
ematical model of the Traveling Salesman Problem (TSP). In Section 3, a comprehensive
introduction to well-known solution approaches for TSP is provided. Information about
convex hull is presented in Section 4. The steps of the proposed algorithm are given in
Section 5. A demonstration of the steps of the proposed algorithm are given in Section 6.
Computational experiments conducted are detailed in Section 7, and finally, in Section 8,
we conclude the paper with a summary.

2. Mathematical Formulation of TSP

The TSP can be effectively defined as a graph problem, a formulation that simplifies
its representation and highlights its combinatorial nature. In the context of the TSP, a
weighted graph is used to represent the cities and the distances between them. The graph
is typically denoted as G = (V,E), where:

V is the set of vertices representing the cities to be visited. Each vertex vi in V
corresponds to a city.

E is the set of edges connecting the cities, and each edge (vi, vj) in E is associated with
a weight or cost cij , which represents the distance, time or cost of traveling from city i to
city j.

The objective of the TSP as a graph problem is to find a Hamiltonian cycle, which is a
closed path that visits each city exactly once and returns to the starting city. The goal is
to determine the Hamiltonian cycle with the minimum total edge weight, which represents
the shortest tour that allows the salesman to visit all cities and return to the starting city.

According to the definition of the TSP, its mathematical description is as follows [10, 15]:
Let xij be a binary variable, where xij = 1 if the salesman travels directly from city

i to city j, and xij = 0 otherwise, N is a set of cities to be visited. Typically, N =
{1, 2, 3, . . . , n}, with n being the number of cities, cij is the cost or distance between city
i and city j, where i, j ∈ N , cij is a non-negative value representing the cost, distance, or
time to travel between these cities.

min
∑
i,j

cijxij (1) (1)
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n∑
i=1

xij = 1, j = 1, 2, . . . , n (2) (2)

n∑
j=1

xij = 1, i = 1, 2, . . . , n (3) (3)

ui − uj + nxij ≤ n− 1; ∀i, j = 1, 2, . . . n; i ̸= j; uk ≥ 0; ∀k = 1, 2, . . . n; (4)

xij ∈ {0, 1}, i, j = 1, 2, . . . , n, i ̸= j (5)

Constraint (1) aims to minimize the total cost. Constraint (2) says that we arrive at city
j from exactly one other city. Constraint (3) says that we leave city i to go to exactly one
other city. Constraint (4) is subtour breaking constraint. Finally, constraint (5) imposes
binary integrality on the variables.

3. Solving Approaches for TSP

Over the years, various solution approaches have been developed for solving this prob-
lem, each with its own strengths and weaknesses [10, 15]. Some of them are as follows:

3.1. Exact Algorithms. Exact algorithms aim to find the optimal solution by exhaus-
tively examining all possible permutations of city visits. While they guarantee the best
solution, they can be computationally expensive for large instances [10, 16].

Some notable exact algorithms include:
Branch and Bound : This algorithm systematically prunes branches of the search tree

to avoid exploring unpromising solutions [10].
Branch and Cut : An extension of branch and bound, this approach incorporates cutting

planes to tighten the relaxation of the problem, reducing the search space [10].

3.2. Heuristic Algorithms. Heuristic algorithms provide heuristic solutions quickly and
are often used when optimality is not the primary concern. They are valuable for large-
scale instances [1, 5, 12, 13].

Some popular heuristic methods include:
Nearest Neighbor: This simple algorithm starts at an arbitrary city and repeatedly

selects the nearest unvisited city as the next destination until all cities are visited. It may
not always yield the optimal solution, but it’s quick and can be used as an initial solution
for other algorithms [6, 7].

Greedy Algorithms: Greedy algorithms are a method of finding a feasible solution to
the TSP. The algorithm creates a list of all edges in the graph and then orders them from
smallest distance to largest distance. It then chooses the edges with the smallest distance
first, providing they do not create a subtour [1, 8].

Insertion Heuristics: Insertion Algorithms start with a TSP subtour and insert one new
vertex at each step until we have a valid Hamiltonian path. Then, like Nearest Neighbor
algorithm, it connects the last vertex to the first to complete the TSP tour [5, 8].

3.3. Genetic Algorithms. Taking inspiration from the mechanisms of natural selection,
genetic algorithms iterate and evolve a population of potential solutions, aiming to discover
improved routes for the Traveling Salesman Problem (TSP).
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3.4. Approximation Algorithms. Approximation algorithms guarantee solutions within
a certain factor of the optimal solution. They strike a balance between solution quality
and efficiency [8].

Notable approximation algorithms include:
Minimum Spanning Tree (MST) Heuristic: This approach constructs an MST of the

cities and then converts it into a tour. The resulting tour is at most twice as long as the
optimal tour [8].

Christofides Algorithm: This algorithm, while computationally intensive, guarantees a
solution within 3

2 times the length of the optimal tour for TSP instances with Euclidean
distances [8, 10].

3.5. Metaheuristic Algorithms. Metaheuristic algorithms are high-level strategies that
guide the search for good solutions. They are often used to find high-quality solutions for
large and complex TSP instances [10].

Common metaheuristics include:
Simulated Annealing : This method mimics the annealing process in metallurgy, gradu-

ally cooling the system to escape local optima and converges to a near-optimal solution.
Ant Colony Optimization (ACO): Inspired by the foraging behavior of ants, ACO algo-

rithms simulate the path-finding process of ants to discover good solutions to the TSP.
Tabu Search: This local search algorithm uses memory to avoid revisiting previously

explored solutions and explores the neighborhood of the current solution to find improve-
ments.

Particle Swarm Optimization (PSO): PSO algorithms are inspired by the collective
behavior of birds or fish. Particles explore the solution space and adjust their positions
based on their own experience and that of their peers.

3.6. Hybrid Approaches. Hybrid approaches combine two or more solution methods
to harness the strengths of each. For example, combining a genetic algorithm with local
search can improve the quality of solutions [7, 10].

In practice, the choice of solution approach depends on factors like the size of the TSP
instance, the required solution quality, and the computational resources available.

4. Convex Hull

The convex hull of a set of points is defined as the smallest polytope in such a way
that the straight line between each pair of points lies inside the polytope. The convex
hull problem appears as an important problem in many applications of computational
geometry. It is used in many areas such as computer graphics, CAD/CAM applications,
collision analysis, pattern recognition, image processing and machine learning.

Sharafutdinov et al. proposed a method to improve the generalization ability of machine
learning models based on the convex hull overlap between multivariate datasets [17]. Zhou
and Shi used a convex hull of training samples as the similarity measure for the face
recognition problem [19]. Shesu et al. developed a method using alpha convex hulls to
detect abnormal oceanic in situ temperature and salinity profiles [18]. Ostrouchov et al.
showed that FastMap which is a dimension reduction technique picks all of its pivots from
convex hull faces that provides a bridge to results in robust statistics [14].

There are several algorithms for computing 2D convex hulls of a given set of points
such as Gift Wrapping, QuickHull and Graham’s Scan with the time complexity of O(nh),
O(n2) and O(nlogn), respectively, where n is the number of points and h is the number
of points on the convex hull. In this paper, we implemented the QuickHull algorithm for
computing the convex hull.
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5. Proposed Algorithm

This section introduces the proposed algorithm, which relies on both convex hull and
insertion heuristics. The proposed algorithm has two versions:

a) In the first version, starting from the farthest vertices from the center, the unse-
lected vertices are successively added to the current tour.

b) In the second version, starting from the vertices closest to the center, the unselected
vertices are successively added to the current tour.

Generally, we can describe the algorithm as follows:

Step 1. The Convex Hull (CH) of the set of vertex points (V ) of the TSP graph is de-
termined. CH(V ) creates the Initial Tour for TSP. Let’s denote the set of vertex
points that make up V1 and CH(V ), and let V2 = V − V1. Let, |V1| = s and
p = n− s.

Step 2. The center point of the set V2 is determined. For this, x =
∑p

i=1 xi

p , and y =
∑p

i=1 yi
p

are calculated, and the point closest to the center (O) becomes the center point
(O(x, y)).

Step 3. Starting from the farthest (nearest) vertices from the center, the vertices are suc-
cessively added to the initial tour (k = 1, 2, . . . , p).

Step 4. Continue with Step 3 until there are no more cities to be added (i.e., until k > p).
Step 5. Stop.

The INSERTION Procedure is performed as follows:
One of the vertices not yet included in the tour is selected as the farthest (nearest)

vertex from the center, and it is denoted as “Ak”. The determination of where this vertex
will be added to the tour is based on the selection of an edge from the tour (let this edge
be (Al, Am), meaning that the endpoints of this edge are (Al) and (Am)) according to the
following criterion:

AlAk +AkAm −AlAm = min.

In other words, an edge (Al, Am) is selected from the tour such that the sum of the
distances between its endpoints (Al) and (Am) to point Ak is subtracted from the length
of edge (Al, Am), resulting in the smallest possible difference.

This edge (Al, Am) is removed from the tour, and in its place, edges AlAk and AkAm

are added to the tour. Vertex Ak is removed from the set V (k = k + 1).

6. Demonstration of the steps of the proposed algorithm

The steps of the algorithm are shown in the Figure 1 given below.
In Figure 1 (A), the set of vertices V = {v1, v2, . . . , v14} is given. In Figure 1 (B), the

Convex Hull of this set is determined, and the point O is selected as the center. This
convex hull forms the initial tour.

In Figure 1 (C), among the vertices not included in the created tour, the furthest vertex
from the center (v8) is selected, and it is added to the previously formed tour. For this,
the edge v1 − v11 is removed from the initial tour, and in its place, the edges v1 − v8 and
v8 − v11 are added.

In Figure 1 (D), among the vertices not included in the created tour, the second furthest
vertex from the center (v12) is selected, and it is added to the previously formed tour. For
this, the edge v13−v14 is removed from the initial tour, and in its place, the edges v13−v12
and v12 − v14 are added.

This process continues, and the 4th, 5th, ..., 8th furthest points are successively added
to the tour (Figures 1 (E) – (K)), and finally, the center vertex is added to complete the
tour (Figure 1 (L)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1. Demonstration of the steps of the proposed algorithm
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Table 1. Computational Experiments

G Optimal
NN
Time(s)

Greedy
Time(s)

Proposed
Algorithm
Version 1

Proposed
Algorithm
Version 2

ulysses16 74.108
78.127
0.000

88.923
0.010

74.23
0.003

74.59
0.003

ulysses22 75.665
86.906
0.000

89.436
0.010

76.15
0.004

76.36
0.004

eil51 426
505.774
0.016

481.518
0.125

487.923
0.02

459.065
0.02

berlin52 7542
8182.192
0.000

9954.062
0.281

8344.549
0.016

8037.864
0.016

eil76 538
612.656
0.016

617.131
0.672

608.649
0.041

607.909
0.041

rat99 1211
1369.535
0.016

1528.308
1.875

1395.813
0.67

1353.430
0.66

kroA100 21282
24698.497
0.016

24197.285
1.937

24589.593
0.070

21955.472
0.068

kroB100 22141
25882.973
0.016

25815.214
2.469

24170.217
0.068

24271.923
0.068

kroC100 20749
23566.403
0.015

25313.671
2.610

22512.937
0.068

22306.579
0.068

kroD100 21294
24855.799
0.016

24631.533
2.359

23105.397
0.068

23460.942
0.068

kroE100 22068
24907.022
0.016

24420.355
2.609

24562.072
0.68

23365.636
0.068

rd100 7910
9427.333
0.015

9900.458
2.648

9207.434
0.068

9167.441
0.068

pr124 6979
8447.973
0.015

8481.267
0.213

7648.189
0.067

7610.118
0.069

lin105 14379
16939.441
0.015

16479.785
3.187

15341.231
0.077

15888.284
0.077

pr107 44303
46678.154
0.016

48261.816
2.109

46226.276
0.074

45801.158
0.073

ch130 6110
7198.741
0.016

7142.045
7.688

7007.479
0.09

6754.876
0.09

kroA150 26524
31482.020
0.047

31442.994
11.094

29742.620
0.149

28939.435
0.148

kroB150 26130
31320.340
0.047

31519.083
11.156

29194.605
0.149

28607.636
0.149

kroA200 29368
34547.691
0.125

37650.812
0.450

33181.416
0.258

32817.646
0.251

7. Computational Experiments

In this section, we present the outcomes of the computational experiments carried out
to assess the performance of our proposed algorithm. The algorithm was implemented
in the Python programming language and tested on a system equipped with an Intel(R)
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Xeon(TM) Silver 4114 CPU operating at 2.2GHz, complemented by 32 GB of RAM,
running a 64-bit Windows operating system.

The algorithm was tested on problems obtained from the TSPLIB dataset [20]. The size
of each problem instance is indicated by numerical labels appended to their titles. Table
1 illustrates the tour lengths obtained by the Nearest Neighbor (NN), Greedy heuristics,
and our proposed algorithm. It is worth emphasizing that the best solutions attained by
the algorithms are distinguished in shaded gray cells.

8. Conclusions

In this study, we present a new heuristic algorithm proposed for solving the symmetric
Traveling Salesman Problem. This algorithm is based on the notion of convex hull. Fur-
thermore, we conducted a series of experiments employing benchmark instances extracted
from the TSPLIB dataset. We performed an exhaustive evaluation, comparing our results
with those obtained using various established techniques. The results derived from our
experiments unequivocally underscore the exceptional performance of our proposed heuris-
tic. It is noteworthy that our heuristic surpasses the performance of several established
methods in this specific context.
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