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FURTHER RESULTS ON THE DOUBLE ROMAN DOMINATION

IN GRAPHS

A. OMAR1∗, A. BOUCHOU2, §

Abstract. A Roman dominating function (RDF) on a graph G is a function f : V −→
{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at
least one vertex v for which f(v) = 2. The weight w (f) of a Roman dominating function
f is the value w(f) =

∑
u∈V f(u). The minimum weight of a Roman dominating function

on a graph G is called the Roman domination number of G, denoted by γR(G). A double
Roman dominating function (DRDF) on a graph G is a function f : V −→ {0, 1, 2, 3}
satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least
one vertex v for which f(v) = 3 or two vertices v1 and v2 for which f(v1) = f(v2) = 2,
and every vertex u for which f(u) = 1 is adjacent to at least one vertex v for which
f(v) ≥ 2. The weight w (f) of a double Roman dominating function f is the value
w(f) =

∑
u∈V f(u). The minimum weight of a double Roman dominating function on

a graph G is called the double Roman domination number of G, denoted by γdR(G). In
this paper,we characterize some classes of graphs G with γdR(G) ≥ 2 (n−∆(G)) − 1.
Moreover we provide a characterization of extremal graphs of a Nordhaus-Gaddum bound
for γdR(G) improving the corresponding results given by L. Volkmann (2023). Finally,
we give a characterization of graphs G with γdR(G) = 2γR(G)− 1..

Keywords: Double Roman dominating function, Double Roman domination number,
Nordhaus-Gaddum inequalities, Tree.

AMS Subject Classification: 05C69

1. Introduction

All the graphs considered in this paper are simple. Let G = (V,E) denote a graph with
vertex set V and edge set E. The order n = |V | of G is the number of its vertices. The
complement G of G = (V,E) is the graph defined on the vertex set V of G, where an
edge belongs to G if and only if it does not belong to G. For every vertex v ∈ V , the
open neighborhood N(v) is the set {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood
of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v of G is degG(v) = |N(v)|.
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By ∆(G) = ∆ and δ(G) = δ we denote the maximum degree and the minimum degree of
G, respectively. For any set S ⊆ V , its open neighborhood is the set N(S) = ∪v∈SN(v),
and its closed neighborhood is the set N [S] = N(S) ∪ S. For any S ⊆ V , we denote the
subgraph of G induced by S as G[S]. We use Kn, Pn and Cn to denote the complete graph,
the path and the cycle of order n, respectively. A tree is a connected graph with no cycles.
A star K1,p for p ≥ 1, is a tree of order p+1 having at least p leaves. For a positive integer
t, a wounded spider is a star K1,t with at most t − 1 of its edges subdivided. A graph G
of order at least two is called regular if its vertices have the same degree and semiregular
if ∆(G)− δ(G) = 1. For simplicity, a regular graph each of whose vertices has degree r is
called r-regular. For terminology not defined here, we refer the reader to [8].

A subset S ⊆ V is a dominating set of G if every vertex in V − S has a neighbor in S.
The domination number γ(G) is the minimum cardinality of a dominating set of G.

A Roman dominating function (RDF) on a graph G is a function f : V −→ {0, 1, 2}
satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one
vertex v for which f(v) = 2. The weight w (f) of a Roman dominating function f is the
value w(f) =

∑
u∈V f(u). The minimum weight of a Roman dominating function on a

graph G is called the Roman domination number of G, denoted by γR(G). For further
details on Roman domination and its variations we refer to the reader the book chapters
[3, 4] and survey [5].

A double Roman dominating function (DRDF) on a graph G is a function f : V −→
{0, 1, 2, 3} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at
least one vertex v for which f(v) = 3 or two vertices v1 and v2 for which f(v1) = f(v2) = 2,
and every vertex u for which f(u) = 1 is adjacent to at least one vertex v for which
f(v) ≥ 2. The weight w (f) of a double Roman dominating function f is the value
w(f) =

∑
u∈V f(u). The minimum weight of a double Roman dominating function on a

graph G is called the double Roman domination number of G, denoted by γdR(G).
It is clear that any Roman dominating function f on a graph G induces three sets

V0, V1, V2 where Vi = {v ∈ V : f(v) = i }, w(f) =
∑

u∈V f(u) = |V1| + 2|V2| and
|V0| + |V1| + |V2| = n, similarly any double Roman dominating function g on a graph G
induces four sets V ′

0 , V
′
1 , V

′
2 , V

′
3 where V ′

i = {v ∈ V : g(v) = i}, w(g) =
∑

u∈V g(u) =
|V ′

1 |+ 2|V ′
2 |+ 3 |V ′

3 | and |V ′
0 |+ |V ′

1 |+ |V ′
2 |+ |V ′

3 | = n.
The double Roman domination number was introduced by Beeler et al. [2], where

they obtained relationships of double Roman domination to both domination and Roman
domination. Furthermore, they proved that γdR(G) ≤ 5

4n for any connected graph G with
n ≥ 3 vertices and characterize the graphs attaining this bound. Later Jafari Rad and
Rahbani [10] observed that γdR(G) ≤ 2 (n−∆) + 1 and presented a characterization of
graphs G with γdR(G) = 2 (n−∆) + 1. Further results on double Roman domination in
graphs can be found in [1, 7, 11, 12, 13, 14].

In this paper, we first give characterization of some classes of graphs G with γdR(G) =
2 (n−∆(G))+k, where k ∈ {−1, 0, 1}. Moreover we provide a characterization of extremal
graphs of a Nordhaus-Gaddum bound for γdR(G) improving the corresponding results
given in [10] and [13]. Finally, we give a characterization of graphs G for which the
equality γdR(G) = 2γR(G)− 1 holds.

2. Preliminary results

We begin by recalling some important results that will be useful in our investigations.

Proposition 2.1. [2] In a double Roman dominating function of weight γdR(G), no vertex
needs to be assigned the value 1.
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Theorem 2.1. [9] Let G be a graph of order n ≥ 5, δ(G) ≥ 2 and with no component
isomorphic to C5 or C7. Then γdR(G) ≤ 11n

10 .

Proposition 2.2. [1] For any integer n ≥ 1,

γdR(Pn) =

{
n if n ≡ 0 (mod 3)

n+ 1 if n ≡ 1, 2 (mod 3) .

Proposition 2.3. [1] For any integer n ≥ 3,

γdR(Cn) =

{
n if n ≡ 0, 2, 3, 4 (mod 6)

n+ 1 if n ≡ 1, 5 (mod 6) .

Proposition 2.4. [1] Let G be a connected graph of order n ≥ 3. Then

(1) γdR(G) = 3 if and only if ∆(G) = n− 1.
(2) γdR(G) = 4 if and only if G = K2∨H, where H is a graph with ∆(H) ≤ |V (H)|−2.
(3) γdR(G) = 5 if and only if ∆(G) = n − 2 and G ̸= K2 ∨ H for any graph H of

order n− 2.

3. Graphs G of order n with γdR(G) ≥ 2 (n−∆)− 1

In this section we provide a characterization of some classes of graphs G with γdR(G) ≥
2 (n−∆)− 1, including regular graphs, semiregular graphs and graphs with ∆− δ = 2.

Using Propositions 2.2 and 2.3, we have the following straightforward observation for
nontrivial graphs with ∆ ≤ 2.

Observation 3.1. Let G be a graph of order n and p a non-negative integer, with maxi-
mum degree ∆ ≤ 2. Then

(1) γdR(G) = 2 (n−∆) + 1 if and only if G = pK1 ∪H where H ∈ {K2, P3, C3, P4}
and n = p+ |V (H)|.

(2) γdR(G) = 2 (n−∆) if and only if G = Kn or G = pK1 ∪H, where
H ∈ {2K2,K2 ∪ P3,K2 ∪ C3,K2 ∪ P4, C4, C5, P5} and n = p+ |V (H)|.

(3) γdR(G) = 2 (n−∆)− 1 if and only if G = pK1 ∪K2 ∪H, where H ∈ {C4, C5, P5}
or G = pK1 ∪ 2K2 ∪H, where H ∈ {K2, P3, C3, P4}.

Jafari Rad and Rahbani [10] presented a family of graphs G with γdR(G) = 2 (n−∆)+1
as follows:

A vertex that belongs to a minimum dominating set of G called a good vertex. The set
of all good vertices of G is denote by good(G), and G− good(G) denotes the subgraph of
G induced by V (G)− good(G). For a graph H, an H-partition is a partition of V (H) into
p+ 1 nonempty sets A0, A1, ..., Ap for some integer p < n such that the following hold:

(1) If p ≥ 2, then for i ≥ 1 the subgraph of H induced by V (H)−Ai has domination
number at least two, or a γ(H[V (H)−Ai])-set is contained in A0.

(2) If 1 ≤ γ(H) ≤ 2, then the following hold:
• If γ(H) = 1, then good(H) ⊆ A0; and every γ(H − good(H))-set has at most
one common vertex with

⋃p
i=1Ai whenever γ(H − good(H)) = 2.

• If γ(H) = 2, then
⋃p

i=1Ai contains at most one vertex of a γ(H)-set, for
i = 1, 2, ..., p; otherwise a γ(H)-set is contained in Ai for i ∈ {1, ..., p} and no
γ(H)-set is contained in

⋂
u∈A0

N(u).
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Definition 3.1. Let A0, A1, ..., Ap be an H-partition of a graph H. Let F be the family of
graphs G that can be obtained from a graph H by adding p+1 new vertices v1, v2, ..., vp, u,
joining vi to all of the vertices of Ai for i = 1, 2, ..., p, and joining u to all of the vertices
of H.

Theorem 3.1. [10] If G is graph of order n with maximum degree ∆(G), then γdR(G) ≤
2 (n−∆(G)) + 1, with equality if and only if G ∈ F .

For any vertex v ∈ V (G), we write N [v] = V (G) − N [v]. We also denote by t the
number of edges joining the vertices of N(v) to the vertices of N [v]. The corona of a
graph G, denoted by Cor(G), is the graph that is obtained by attaching a leaf to each
vertex v ∈ V .

Proposition 3.1. Let G be a graph of order n and p a non-negative integer with maximum
degree ∆ such that ∆ − δ ≤ 2. Then γdR(G) = 2 (n−∆) + 1 if and only if either G ∈
{pK1 ∪H, H ∈ {K2, P3, C3, P4}} ∪ {cor(P3), cor(C3)}, or ∆ = n − 1, or ∆ = n − 2 and
G ̸= K2 ∨H for any graph H of order n− 2.

Proof. Let G be a graph of order n with maximum degree ∆ and minimum degree δ such
that ∆− δ = k ∈ {0, 1, 2} and γdR(G) = 2 (n−∆) + 1. If ∆ ≤ 2, then from Observation
3.1 we obtain G = pK1∪H where H ∈ {K2, P3, C3, P4} and n = p+ |V (H)|. Now assume
that ∆ ≥ 3. According to the construction of Family F described above in Definition 3.1,
every vertex in N [v] has at least ∆− k neighbors in N(v), and every vertex in N(v) has
at most one neighbor in N [v], but at least one vertex which has no neighbor in N [v]. So
we have (∆− k)

∣∣N [v]
∣∣ ≤ t ≤ |N(v)| − 1, which provides (∆− k) (n−∆− 1) ≤ ∆ − 1,

and thus n ≤ ∆+ 2 + k−1
∆−k . Clearly, for ∆ ≥ 2k, we have ∆ ≥ n− 2, and by Proposition

2.4, G ̸= K2 ∨H for any graph H of order n − 2. Assume now that ∆ ≤ 2k − 1. Since
∆ ≥ 3 and k ≤ 2, we obtain that k = 2 and ∆ = 3, and thus n ∈ {4, 5, 6}. If n ∈ {4, 5},
then ∆ ≥ n− 2, again by Proposition 2.4, G ̸= K2 ∨H for any graph H of order n− 2. If
n = 6, then t = 2. It is a simple matter to check that G = cor(P3) or cor(C3).

The converse is easy to show. □

Next, we present a necessary conditions for connected graphsG of order n and maximum
degree ∆, where 2 (n−∆)− 1 ≤ γdR(G) ≤ 2 (n−∆).

Lemma 3.1. Let G be a connected graph of order n with maximum degree ∆. If γdR(G) =
2 (n−∆)− p, where p ∈ {0, 1}, then for every vertex v of maximum degree we have:

(1) Every vertex of N(v) has at most two neighbors in N [v].
(2) N [v] ̸= ∅ and every component of G

[
N [v]

]
has at most two vertices. Moreover

i) If p = 0, then G
[
N [v]

]
contains at most one edge.

ii) If p = 1, then G
[
N [v]

]
contains at most two independent edges.

Proof. Let G be a graph with γdR(G) = 2 (n−∆) − p where p ∈ {0, 1}. Let v be a
vertex of maximum degree ∆. If some vertex u ∈ N(v) has at least three neighbors in
N [v], then f = (N(u) ∪ N(v) − {u, v}, V (G) − (N(u) ∪N(v)) , {u, v}) is a DRDF with
weight at most 2 (n−∆) − 2, a contradiction. Hence (1) follows. If N [v] = ∅, then
∆ = n − 1, and so γdR(G) = 3 = 2 (n−∆) + 1, a contradiction. Thus assume that
N [v] ̸= ∅. Suppose there is a component of G[N [v]], say F , has at least three vertices.
Let x ∈ V (F ), with |NF (x)| ≥ 2. Clearly f = (N ({v, x}) , V (G) − N [{v, x}], {v, x})
is a DRDF, with weight at most 2 (n−∆) − 2, a contradiction. Now suppose that
p = 0 and G

[
N [v]

]
contains two independent edges xy and x′y′. Then clearly g =

(N(v) ∪ {y, y′}, V (G) − (N [v] ∪ {x, x′, y, y′}), {v, x, x′}) is a DRDF, with weight at most
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2 (n−∆)− 1, a contradiction. Finally suppose that p = 1 and G
[
N(v)

]
contains at least

three independent edges xy, x′y′ and x′′y′′. Then clearly g = (N(v) ∪ {y, y′, y′′}, V (G) −
(N [v] ∪ {x, x′, x′′, y, y′, y′′}), {v, x, x′, x′′}) is a DRDF, with weight at most 2 (n−∆)− 2,
a contradiction. Hence (2) follows. □

Proposition 3.2. Let G be a graph of order n with maximum degree ∆ such that ∆ −
δ ≤ 1. Then γdR(G) = 2 (n−∆) if and only if either G ∈ {Kn,C4,C5,(n− 4)K1 ∪
2K2,K2∪P3,K2∪C3,K2∪P4,P5}, or ∆ = n − 3 and ∆ ≥ 3, or ∆ = n − 2, ∆ ≥ 3 and
G = K2 ∨H, where H is a graph with ∆(H) ≤ |V (H)| − 2.

Proof. Let G be a graph of order n with maximum degree ∆ such that ∆ − δ = k ∈
{0, 1}, and let v ∈ V (G) be a vertex of maximum degree. Assume that γdR(G) =
2 (n−∆). If ∆ ≤ 2, then from Observation 3.1 we obtain G ∈

{
Kn, 2K2, C4, C5

}
, or

G ∈ {(n− 4)K1 ∪ 2K2;n ≥ 5}, or G ∈ {K2 ∪ P3,K2 ∪ C3,K2 ∪ P4, P5}. Now assume
that ∆ ≥ 3. By Lemma 3.1, every vertex in N [v] has at least ∆−k−1 neighbors in N(v),
and every vertex in N(v) has at most two neighbors in N [v], and

∣∣N [v]
∣∣ ̸= 0. We proceed

according to the value of
∣∣N [v]

∣∣.
Case 1. If

∣∣N [v]
∣∣ ≥ 5, then 2 (∆− k − 1) + 3 (∆− k) ≤ t ≤ 2∆, which provides

∆ ≤
⌊
5k+2
3

⌋
≤ 2, a contradiction.

Case 2.
∣∣N [v]

∣∣ = 4. Then ∆ = n − 5, and thus 2 (∆− k − 1) + 2 (∆− k) ≤ t ≤ 2∆,
which provides ∆ ≤ 2k + 1, and thus k = 1, ∆ = 3 and n = 8. By Theorem 2.1,
γdR(G) ≤ 11n

10 < 2 (n−∆), a contradiction.

Case 3.
∣∣N [v]

∣∣ = 3. Then ∆ = n − 4, and thus 2 (∆− k − 1) + (∆− k) ≤ t ≤ 2∆,

which provides ∆ ≤ 3k + 2. So k = 1 and ∆ ∈ {3, 4, 5}. Set N [v] = {x, y, z}, we have
three possibilities.

Subcase 3.1. ∆ = 5. Then n = 9, which gives t = 10. Thus N [v] has exactly one
edge and every vertex in N [v] has degree 4. Let N(v) = {a, b, c, d, e}. Without loss of
generality, we assume that xy ∈ E (G). Since t = 10, |N(x) ∩N(v)| = |N(y) ∩N(v)| = 3,
and |N(z) ∩N(v)| = 4. Let N(z) = {a, b, c, d}. Clearly, x and y have no common neighbor
in {a, b, c, d}, and so x and y have e as a unique common neighbor in N(v). The function
f = ({x, y, a, b, c, d, v}, ∅, {z, e}) is an DRDF on G of weight 6, which contradicts the fact
that γdR(G) = 2 (n−∆).

Subcase 3.2. ∆ = 4. Then n = 8, which gives t ∈ {7, 8}. Clearly, N [v] is not
independent. Without loss of generality, assume that xy ∈ E (G). Let N(v) = {a, b, c, d}.
Since |N(z) ∩N(v)| ≥ 3, we may assume that {a, b, c} ⊆ N(z). Clearly, xd or yd ∈ E (G),
say xd ∈ E (G). The function f = ({a, b, c, d, y}, {v, z} , {x}) is an DRDF on G of weight
7, which contradicts the fact that γdR(G) = 2 (n−∆).

Subcase 3.3. ∆ = 3. Then n = 7. Note that δ ≥ 2. Again by Theorem 2.1, γdR(G) ≤
11n
10 < 2 (n−∆) a contradiction.

Case 4.
∣∣N [v]

∣∣ = 2. Then ∆ = n− 3 holds.

Case 5.
∣∣N [v]

∣∣ = 1. Then ∆ = n−2, and thus by Proposition 2.4, γdR(G) = 2 (n−∆)

leads G = K2 ∨H, where H is a graph with ∆ (H) ≤ |V (H)| − 2.
The converse is easy to show. □

Proposition 3.3. Let G be a ∆-regular graph of order n ≥ 2. Then γdR(G) = 2 (n−∆)−1
if and only if G = 3K2.

Proof. Let G be a ∆-regular graph of order n ≥ 2. Assume that γdR(G) = 2 (n−∆)− 1.
If ∆ ≥ 3, then by Lemma 3.1, every vertex in N [v] has at least ∆ − 1 neighbors in
N(v), and every vertex in N(v) has at most two neighbors in N [v]. If

∣∣N [v]
∣∣ ≥ 3, then
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2 (∆− 1)+∆ ≤ t ≤ 2∆, which provides ∆ ≤ 2, a contradiction. Therefore
∣∣N [v]

∣∣ ≤ 2, and
so ∆ ≥ n− 3. By Propositions 3.1 and 3.2, we have γdR(G) ≥ 2 (n−∆), a contradiction.
Now assume that ∆ ≤ 2, then by Observation 3.1, we have G ∈ {3K2}.

The converse is easy to show. □

4. Nordhaus-Gaddum Inequality

Jafari Rad and Rahbani [10], and Volkmann [13] presented Nordhaus-Gaddum type
inequalities for the double Roman domination number in terms of the order of the graph
G.

Theorem 4.1. [10] For any graph G of order n ≥ 2, γdR(G) + γdR(G) ≤ 2n + 3, with
equality if and only if G ∈

{
Kn,Kn

}
.

In the following, let Kn − e and Kn − {e1, e2} represent the complete graph minus an
edge and the complete graph minus two independent edges, respectively. Additionally, let
H1 =

{
2K2, C4, P4, C5,Kn − e,Kn − e;n ≥ 3

}
.

Theorem 4.2. [10] Let G be a graph of order n ≥ 3 such that G /∈
{
Kn,Kn

}
. Then

γdR(G) + γdR(G) ≤ 2n+ 2, with equality if and only if G ∈ H1.

Theorem 4.3. [13] Let G be a graph of order n ≥ 4 such that G /∈
{
Kn,Kn

}
∪H1. Then

γdR(G)+γdR(G) ≤ 2n+1, with equality if and only if G ∈
{
Kn − {e1, e2} ,Kn − {e1, e2}

}
and n ≥ 5 or G ∈

{
P5, 3K2, P5, 3K2

}
.

According to Theorems 4.1, 4.2 and 4.3, if G is a graph such that G /∈ H =
{
Kn,Kn

}
∪

H1 ∪ H2, where H2 =
{
Kn − {e1, e2} ,Kn − {e1, e2}, P5, 3K2, P5, 3K2;n ≥ 5

}
, then we

obtain γdR(G)+ γdR(G) ≤ 2n. In the sequel, we provide a characterization of graphs G of
order n ≥ 4 for which γR(G) + γR(G) = 2n. For this purpose, We introduce the following
families of graphs :

• F0 = {4K2, 2C3, C6, C7}.
• F1 = {(n− 6)K1 ∪ 3K2;n ≥ 7,K2 ∪ P3,K2 ∪ C3,K2 ∪ P4}∪
{F : F is semiregular with n (F ) = 6 and ∆(F ) = 3}.

• F2 = {(n− 3)K1 ∪ P3, (n− 3)K1 ∪ C3, (n− 4)K1 ∪ P4;n ≥ 4} ∪
{cor(P3), cor(C3), F1, F2, F3}, where F1, F2 and F3 are the graphs illustrated in
Figure 1.

Theorem 4.4. Let G be a graph of order n ≥ 4 such that G /∈ H. Then γdR(G)+γdR(G) ≤
2n, with equality if and only if G or G ∈ F0 ∪ F1 ∪ F2.

Proof. Clearly, the upper bound follows from Theorems 4.1, 4.2 and 4.3, since G /∈ H.
Assume now that γdR(G) + γdR(G) = 2n. By Theorem 3.1, we have

2n = γdR(G) + γdR(G)

≤ 2 (n−∆(G)) + 1 + 2
(
n−∆

(
G
))

+ 1

≤ 2n− 2 (∆(G)− δ(G)) + 4.

Hence ∆(G)− δ(G) ≤ 2. Therefore G is either regular or semiregular or ∆(G)− δ(G) = 2.
We distinguish three cases.

Case 1. G is regular. Then without loss of generality we consider three possibilities:
Subcase 1.1. γdR(G) = 2 (n−∆(G)) + 1 and γdR(G) = 2

(
n−∆

(
G
))

− 3. By Propo-
sition 3.1, we have G = Kn, excluded, since Kn ∈ H.
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Subcase 1.2. γdR(G) = 2 (n−∆(G)) and γdR(G) = 2
(
n−∆

(
G
))

− 2. By Proposition

3.2, and since G /∈
{
Kn, C4, 2K2, C5

}
⊂ H, we have ∆(G) = n−3 or n−2 with ∆(G) ≥ 3.

Clearly, if ∆(G) = n−3, then G is the disjoint union of p copies of cycles of order ni, where
p ≥ 1 and n =

∑p
i=1ni. Using the fact that γdR(Cni) ≤ ni+1 (see Proposition 2.3), we have

2n−6 = γdR(G) =
∑p

i=1γdR(Cni) ≤ n+p, which gives n ≤ p+6. On the other hand, since
ni ≥ 3, for i ∈ {1, ..., p}, we have n ≥ 3p, so, p ≤ 3. Now, it is easy to cheek that if p = 1,
then G ∈ {C6, C7}, and if p = 2 then G ∈ {2C3, C3 ∪ C4}, finally if p = 3 then G = 3C3.
Then γdR(G) = 2

(
n−∆

(
G
))

− 2 leaves G ∈ {2C3, C6, C7} ⊂ F0. Now assume that

∆(G) = n− 2. Then each component of G is a K2, and thus γdR(G) = 2
(
n−∆

(
G
))

− 2

leaves G = 4K2. Hence G ∈ F0.
Subcase 1.3. γdR(G) = 2 (n−∆(G))− 1 and γdR(G) = 2

(
n−∆

(
G
))

− 1. By Propo-
sition 3.3, we have G = 3K2, excluded, since 3K2 ∈ H.

Case 2. G is semi-regular. Then without loss of generality we have two possibilities:
Subcase 2.1. γdR(G) = 2 (n−∆(G))+1 and γdR(G) = 2

(
n−∆

(
G
))

− 1. By Proposi-

tion 3.1, we have G = (n− 2)K1 ∪K2, ∆(G) = n− 1, or ∆(G) = n− 2 and G ̸= K2 ∨H
for any graph H of order n − 2. The graph (n− 2)K1 ∪ K2 is excluded, since it is in
H. If ∆ (G) = n − 1, then ∆

(
G
)
= 1, and so γdR(G) = 2

(
n−∆

(
G
))

− 1 leaves G =

(n− 6)K1 ∪ 3K2. Hence G ∈ F1. Now assume that ∆ (G) = n− 2. Then ∆
(
G
)
= 2. By

Observation 3.1, we have G = K2∪H, where H ∈ {K2 ∪ P3,K2 ∪ C3,K2 ∪ P4, C4, C5, P5},
contradicting the fact that G ̸= K2 ∨H.

Subcase 2.2. γdR(G) = 2 (n−∆(G)) and γdR(G) = 2
(
n−∆

(
G
))
. By Proposition

3.2, we have G ∈ {pK1 ∪ 2K2 where p ≥ 1,K2 ∪ P3,K2 ∪ C3,K2 ∪ P4, P5}, or ∆(G) =
n − 3 and ∆ (G) ≥ 3, or ∆(G) = n − 2, ∆ (G) ≥ 3 and G = K2 ∨ H, where G is
a graph with ∆ (G) ≤ |V (G)| − 2. The graphs pK1 ∪ 2K2 where p ≥ 1 and P5 are
excluded, since they are in H. So for ∆(G) ≤ 2, γdR(G) = 2

(
n−∆

(
G
))

leaves G ∈
{K2 ∪ P3,K2 ∪ C3,K2 ∪ P4} ⊂ F1. Now suppose that ∆(G) ≥ 3. If ∆(G) = n − 2, then
∆(G) = 2, and soG ∈ {K2 ∪ P3,K2 ∪ C3,K2 ∪ P4} ⊂ F1. Now assume that ∆ (G) = n−3.
Then ∆(G) = 3, which means that ∆(G) = n − 3, and thus n = 6. Therefore G and G
are semi regular with maximum degree 3. Hence G and G are in F1.
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Figure 1. Graphs G in F2 with ∆ (G) = 3.
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Case 3. ∆(G)−δ(G) = 2. Then we have the only possibility; γdR(G) = 2 (n−∆(G))+
1 and γdR(G) = 2

(
n−∆

(
G
))

+ 1. By Proposition 3.1, we have either M ∈{pK1 ∪ H,
where H ∈{P3,C3,P4} and p ≥ 1}∪{cor(P3),cor(C3)}, or ∆(M) = n − 1, or ∆(M) =
n − 2 and M ̸= K2 ∨ H for any graph H of order n − 2, where M ∈

{
G,G

}
. With-

out loss of generality, if ∆(G) ≤ 2, then G ∈{pK1 ∪ H, where H ∈{P3,C3,P4} and
p ≥ 1}. Therefore G has a vertex with degree ∆(G) = n − 1. Hence G ∈ F2. Now
suppose that ∆(G) ≥ 3. If ∆(G) = n − 1, then G has an isolated vertex, and so
G ∈ {pK1 ∪H, where H ∈ {P3, C3, P4} and p ≥ 1}. Hence G ∈ F2. Assume that ∆(G) =
n−2, then ∆

(
G
)
= 3. By the construction of Family F described above, we get n ∈ {5, 6}.

It is a simple matter to check that G ∈ {F1, F2, F3, cor(P3), cor(C3)} ⊂ F2 (see Figure 1).
The converse is easy to see and we omit the details. □

5. Graph with γdR(G) = 2γR(G)− 1

In this section, we give a characterization of connected graphs with γdR(G) = 2γR(G)−1.
We begin by recalling some important results that will be useful.

Theorem 5.1. [6] For any graph G, γ(G) ≤ γR(G) with equality if and only if G = Kn.

Theorem 5.2. [2] For any graph G, γdR(G) ≤ 2γR(G) with equality if and only if G = Kn.

From Theorem 5.2, if G is a nontrivial connected graph, then γdR(G) ≤ 2γR(G) − 1.
A characterization of the connected graphs G with γdR-functions of weight γdR(G) =
2γR(G)− 1, will be shown in the following.

Proposition 5.1. If G is a connected graph of order n with maximum degree ∆(G), then
γdR(G) = 2γR(G)− 1 if and only if γdR(G) = 2 (n−∆(G)) + 1.

Proof. Let f = (V0, V1, V2) be an RDF with minimum weight and γdR(G) = 2w (f)−1. So
γdR(G) = 2 |V1|+ 4 |V2| − 1. It is clear that g = (V0, ∅, V1, V2) is a DRDF on G of weight
γdR(G) ≤ 2 |V1|+ 3 |V2|. A simple calculation gives |V2| ≤ 1. we have two cases:

Case 1. V2 = ∅. Then V1 = V . However, it is observed that γR(G) = n if and only if
G = pK2 ∪ qK1 where 2p+ q = n. Since G is connected, γdR(G) = 2γR(G)− 1 leaves only
G = K2. Hence γdR(G) = 2 (n−∆(G)) + 1.

Case 2. V2 = {v}. Since no edge of G joins V1 and {v}, and {v} dominates V0, we have

deg(v) = |V0| = n− (|V1|+ |V2|) = n− γR(G) + 1 = n− γdR(G) + 1

2
+ 1

and so ∆(G) ≥ 2n−γdR(G)+1
2 . Hence γdR(G) ≥ 2 (n−∆(G)) + 1. Equality holds from

the fact that γdR(G) ≤ 2 (n−∆(G)) + 1.
Conversely, assume γdR(G) = 2 (n−∆(G))+1, and let v be a vertex ofG with maximum

degree ∆(G). We define V0 = N(v), V1 = V −N [v], and V2 = {v}, then f = (V0, V1, V2)

is an RDF with w (f) = n−∆(G) + 1 = γdR(G)+1
2 . Since γR(G) ≥ γdR(G)+1

2 for connected
graphs, f is an RDF for G with w (f) = γR (G). □

The following result is an immediate consequence of Theorem 3.1 and Propositions 5.1.

Corollary 5.1. Let G be a connected graph of order n with maximum degree ∆(G). Then
the following statements are equivalent:

i) γdR(G) = 2γR(G)− 1.
ii) γdR(G) = 2 (n−∆(G)) + 1.
iii) G ∈ F .
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We note that if γdR(G) = 2γ(G)+1 and γR(G) = γ(G)+1, then γdR(G) = 2γR(G)− 1.
But the converse is not true as shown by the graph in Figure 2.
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uu u u
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�

@
@
@
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HHH

HH

Figure 2. Graph with γ (G) = 3, γR (G) = 5 and γdR (G) = 9.

If one of the following equations γdR(G) = 2γ(G)+1 and γR(G) = γ(G)+1 is not hold,
then clearly that γdR(G) ̸= 2γR(G)− 1.

Now in the class of trees, from the construction of Family F , described above, we observe
that wounded spiders are the only trees in F , and by other hand wounded spiders are the
only trees T for such that γdR(T ) = 2γR(T )−1, or γR(T ) = γ(T )+1, or γdR(T ) = 2γ(T )+1,
as shown by Zhang et al. [14], Cockayne et al. [6] and Ahangar et al. [1], respectively.
The following result is an immediate consequence of Corollary 5.1.

Corollary 5.2. Let T be a tree of order n with maximum degree ∆(T ). Then the following
statements are equivalent:

i) γdR(T ) = 2γR(T )− 1.
ii) γdR(T ) = 2γ(T ) + 1.
iii) γR(T ) = γ(T ) + 1.
iv) γdR(T ) = 2 (n−∆(T )) + 1.
v) T is a wounded spider.

6. Conclusions

In this paper, we provided a characterization of extremal graphs of a Nordhaus-Gaddum
bound for γdR (G), improving the corresponding results given in [10] and [13]. Moreover,
we gave a characterization of graphs G for which the equality γdR(G) = 2γR(G)−1 holds,
improving the corresponding results given in [14].

Acknowledgement. The authors are grateful to the anonymous referees for their valu-
able suggestions and useful comments.
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