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NEW RESULTS ON CAPUTO FRACTIONAL VOLTERRA-FREDHOLM

INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL

CONDITIONS

A. A. SHARIF1,3∗, A. A. HAMOUD2, M. M. HAMOOD2,3, K. P. GHADLE3, §

Abstract. This article investigates the existence and uniqueness of solutions for a
nonlocal initial condition of the Caputo fractional Volterra-Fredholm integro-differential
equation in a Banach space. We shall prove the existence and uniqueness of the results
by using the Banach and Krasnoselskii fixed-point theorems. A number of illustrative
examples will be given to further the understanding of our main conclusions.
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1. Introduction

Fractional calculus extends the concepts of derivatives and integrals for functions to
non-integer orders. The exploration of equations involving fractional differentiation and
integration is a relatively recent pursuit. Prominent contributions in this field include the
works of Kilbas et al. [1], Podlubny [2], and other researchers. Integro-differential equa-
tions link the derivatives and function values over a domain, making them broadly useful
models across science and engineering. By relating rates of change and net quantities,
these equations describe conserved physical properties. For example, integro-differential
formulations represent total mass in transport phenomena and moment integrals in me-
chanics, as established in several studies [3, 4, 5, 6, 7, 8, 9, 10]. The distinctive fusion
of local and non-local theories empowers integro-differential equations as adaptable repre-
sentations. Much research has thus focused on developing solutions for such formulations.
Especially active investigation surrounds fractional order integro-differential equations,
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seeking conditions to guarantee solution existence and uniqueness. Multiple studies have
presented proofs and numerical evidence certifying well-posed solutions to an array of
fractional integro-differential systems [11, 12, 13, 14, 15, 16, 17, 31]. Elucidating requi-
site constraints for robust fractional integro-differential solution theories remains an open
challenge with profound implications, commanding wide attention.

In [18], the local and global existence of the Cauchy problem is studied. In [19], the
existence and uniqueness of the fractional integro-differential issue were examined.

The primary objective of this paper is to establish multiple standards that can be
used to determine if a solution exists and is unique for a specified fractional Volterra-
Fredholm integro-differential equation and corresponding initial value problem. In order
to accomplish this goal, we first converted our main problem into an equivalent fixed
point problem. We then utilized the fixed point theorems of Banach and Krasnoselskii
to prove the existence and uniqueness results regarding solutions to our problem within a
well-defined Banach space.

In this paper, we considered a new fractional class of Volterra-Fredholm integro-differential
equation in the context of the standard Caputo fractional derivative:

CDw
0+φ(r) = Φ(φ(r)) + F(r, φ(r)) +

∫ r

0
ℏ0(r, σ, φ(σ))dσ +

∫ 1

0
ℏ1(r, σ, φ(σ))dσ, r ∈ ψ (1)

φ(0) = ξ

∫ ζ

0
φ(ϖ)dϖ, 0 < ζ < 1, ψ = [0, 1], (2)

where CDw is the Caputo fractional derivative of order w, F : ψ × R → R and ℏ0, ℏ1 :
ψ × ψ × R → R, Φ ∈ (ψ,ψ) are appropriate functions satisfying some conditions which
will be stated later.

2. Auxiliary Results

Before presenting our primary results, we offer the essential definitions, preliminary de-
tails, and assumptions that will be employed in our subsequent discourse [20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30].

Definition 2.1. [1, 2] The Riemann-Liouville fractional integral of order w , is defined
by

Iw0+φ(r) =
1

Γ(w)

∫ r

0
(r− σ)w−1φ(σ)dσ, w > 0. (3)

Definition 2.2. [1, 2] The Caputo fractional derivative of order w (υ − 1 < w < υ) is
defined as

CDw
0+φ(r) =

1

Γ(υ −w)

∫ r

0
(r− σ)υ−w−1φ(υ)(σ)dσ, w > 0. (4)

Lemma 2.1. [1], For real numbers w, q > 0 and appropriate function φ; we have for all

(1) Iw0+I
q
0+
φ(r) = Iq

0+
Iw0+φ(r) = Iw+q

0+
φ(r)

(2) Iw0+
CDw

0+φ(r) = φ(r)− φ(0), 0 < w < 1

(3) CDw
0+I

w
0+φ(r) = φ(r).

Theorem 2.1. (Banach’s fixed point theorem)[8]. Suppose Ω be a non-empty complete
metric space and ℑ : Ω → Ω, is contraction mapping. Then, there exists a unique point σ ∈
Ω such that Φ(σ) = σ.
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Theorem 2.2. (Krasnoselskii’s fixed point theorem)[8]. Suppose ϖ be a closed convex and
nonempty subset of a Banach space κ. If ℑ,ℑ∗ be two operators such that:
1. ℑκ+ ℑ∗κ∗ ∈ ϖ whenever κ, κ∗ ∈ ϖ.
2. ℑ is compact and continuous.
3. ℑ∗ is a contraction mapping.
Then there exists ϖ0 ∈ ϖ such that ℑ∗ = ℑϖ0 + ℑ∗ϖ0.

3. Principal Findings

Using Banach’s fixed point theorem, we will demonstrate the existence and uniqueness
of the solution to the problem (1)-(2) in C (ψ,R). We will require some presumptions
about this fact.

(∇1) Φ : ψ → R is continuous and there exists 0 < K < 1 such that

|Φ(φ(r))− Φ(φ0(r))| ≤ K∥φ− φ0∥
(∇2) ℑ : ψ × R → R is continuous and there exists Θ ∈ L∞(ψ,R+) such that

|ℑ(r, φ(r))−ℑ(r, φ0(r)| ≤ Θ(r)∥φ− φ0∥,
(∇3) ℏ0, ℏ1 : G × ψ → R are continuous on G and there exist Hi, i = 1, 2 ∈ L1(ψ,R+)

such that

|ℏ0(r, σ, φ(σ))− ℏ0(r, σ, φ0(σ))| ≤ H1(r)∥φ− φ0∥
|ℏ1(r, σ, φ(σ))− ℏ1(r, σ, φ0(σ))| ≤ H2(r)∥φ− φ0∥.

Lemma 3.1. Suppose 0 < w < 1 and ξ ̸= 1
ζ . Assume that Φ,ℑ, ℏ0 and , ℏ1 are continuous

functions. If φ ∈ C(ψ,R) then φ is solution of (1)-(2) if and only if φ satisfies the integral
equation

φ(r) =
1

Γ(w)

∫ r

0
(r− ρ)w−1

[
Φ(φ(ρ)) + ℑ(ρ, φ(ρ)) +

∫ ρ

0
ℏ0(ρ, σ, φ(σ))dσ

+

∫ 1

0
ℏ1(ρ, σ, φ(σ))dσ

]
dρ+

ξ

(1− ξζ)Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
Φ(φ(µ)) + ℑ(µ, φ(µ))

+

∫ µ

0
ℏ0(µ, ω, φ(ω))dω +

∫ 1

0
ℏ1(µ, ω, φ(ω))dω

]
dµ.

Proof. Suppose φ ∈ C(ψ,R) be a solution of (1)-(2). Firstly, we show that φ is solution
of integral equation (5). By Lemma 2.1, we obtain

Iw0+
CDw

0+φ(r) = φ(r)− φ(0). (5)

In addition, from equation in (1)-(2) and Definition 2.1, we have

Iw0+
CDw

0+φ(r) =
1

Γ(w)

∫ r

0
(r− ρ)w−1

[
Φ(φ(ρ)) + ℑ(ρ, φ(ρ)) +

∫ ρ

0
ℏ0(ρ, σ, φ(σ))dσ

+

∫ 1

0
ℏ1(ρ, σ, φ(σ))dσ

]
dρ. (6)

By substituting (6) in (5) with nonlocal condition in problem (2), we get

φ(r) =
1

Γ(w)

∫ r

0
(r− ρ)w−1

[
Φ(φ(ρ)) + ℑ(ρ, φ(ρ)) +

∫ ρ

0
ℏ0(ρ, σ, φ(σ))dσ

+

∫ 1

0
ℏ1(ρ, σ, φ(σ))dσ

]
dρ+ φ(0) (7)
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but, we have

φ(0) = ξ

∫ ζ

0
φ(ϖ)dϖ

=
ξ

Γ(w)

∫ ζ

0

[∫ ϖ

0
(ϖ − µ)w−1

[
Φ(φ(µ)) + ℑ(µ, φ(µ))

+

∫ µ

0
ℏ0(µ, ω, φ(ω))dω +

∫ 1

0
ℏ1(µ, ω, φ(ω))dω

]
dµ

]
dϖ + ξζφ(0)

=
ξ

Γ(w)

[∫ ζ

0

∫ ϖ

0
(ϖ − µ)w−1Φ(φ(µ))dµdϖ

+

∫ ζ

0

∫ ϖ

0
(σ − µ)w−1ℑ(µ, φ(µ))dµdϖ

+

∫ ζ

0

∫ ϖ

0
(ϖ − µ)w−1

∫ µ

0
ℏ0(µ, ω, φ(ω))dωdµdϖ

+

∫ ζ

0

∫ ϖ

0
(ϖ − µ)w−1

∫ 1

0
ℏ1(µ, ω, φ(ω))dωdµdϖ

]
+ ξζφ(0).

Consequently,

φ(0) =
ξ

(1− ξζ)Γ(w)

[∫ ζ

0

∫ ϖ

0
(ϖ − µ)w−1Φ(φ(µ))dµdϖ

+

∫ ζ

0

∫ ϖ

0
(ϖ − µ)w−1ℑ(µ, φ(µ))dµdϖ

+

∫ ζ

0

∫ ϖ

0
(ϖ − µ)w−1

∫ µ

0
ℏ0(µ, ω, φ(ω))dωdµdϖ

+

∫ ζ

0

∫ σ

0
(σ − µ)w−1

∫ 1

0
ℏ1(µ, ω, φ(ω))dωdµdϖ

]
.

Using some manipulations we obtain:

φ(0) =
ξ

(1− ξζ)Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
Φ(φ(µ)) + ℑ(µ, φ(µ)) +

∫ µ

0
ℏ0(µ, ω, φ(ω))dω

+

∫ 1

0
ℏ1(µ, ω, φ(ω))dω

]
dµ.

Now, by substituting the last value of φ(0) in (7) we find (5). Conversely, in view of
Lemma 2.1 and by applying the operator CDw

0+ on both sides of (5), we get

CDw
0+φ(r) = CDw

0+I
w
0+Φ(φ(r)) +

C Dw
0+I

w
0+ℑ(z, φ(r))

+ CDw
0+I

w
0+

(∫ r

0
ℏ0(r, σ, φ(σ))dσ +

∫ 1

0
ℏ1(r, σ, φ(σ))dσ

)
= Φ(φ(r)) + ℑ(r, φ(r)) +

∫ r

0
ℏ0(r, σ, φ(σ))dσ

+

∫ 1

0
ℏ1(r, σ, φ(σ))dσ. (8)
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We will establish the problem’s existence and uniqueness by verifying the fulfillment of
the given equation (1)-(2) through the function φ. Furthermore, upon substituting r with
0 in the integral equation (5), it becomes evident that the nonlocal condition specified
in (1)-(2) is satisfied. Consequently, φ constitutes a solution for problem (1)-(2), thereby
concluding the proof. □

Theorem 3.1. Assume that

(∆1) ∥Φ(φ(r))− Φ(φ0(r))∥ ≤ δ∥φ− φ0∥, φ, φ0 ∈ R
(∆2) ∥ℑ(r, φ(r))−ℑ(r, φ0(r)∥ ≤ δ∗∥φ− φ0∥, r ∈ ψ, φ, φ0 ∈ R
(∆3) ∥ℏ0(r, σ, φ(σ))− ℏ0(r, σ, φ0(σ))∥ ≤ δ0∥φ− φ0∥

∥ℏ1(r, σ, φ(σ))− ℏ1(r, σ, φ0(σ))∥ ≤ δ∗0∥φ− φ0∥, (r, σ) ∈ G, φ, φ0 ∈ R

Be =

[
[δ + δ∗ + δ∗0 ]

Γ(w+ 1)
+

δ0
Γ(w+ 2)

+

[
|ξ|δ + |ξ|δ∗ + |ξ|δ∗0

]
ζw+1

|1− ξζ|Γ(w+ 2)
+

|ξ|δ0ζw+2

|1− ξζ|Γ(w+ 3)

]
< 1. (9)

In such a case, the fractional Volterra-Fredholm integro-differential problem (1)-(2) pos-
sesses a solitary solution that is unique.

Proof. To begin with, we establish the definition of an operator ℵ : C(ψ,R) → C(ψ,R) by

(ℵφ)(r) =
1

Γ(w)

∫ r

0
(r− ρ)w−1

[
Φ(φ(ρ)) + ℑ(ρ, φ(ρ)) +

∫ ρ

0
ℏ0(ρ, σ, φ(σ))dσ

+

∫ 1

0
ℏ1(ρ, σ, φ(σ))dσ

]
dρ+

ξ

(1− ξζ)Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
Φ(φ(µ)) + ℑ(µ, φ(µ))

+

∫ µ

0
ℏ0(µ, ω, φ(ω))dω +

∫ 1

0
ℏ1(µ, ω, φ(ω))dω

]
dµ

and we consider the subset Mℓ of C(ψ,R) defined by

Mℓ = {φ ∈ C(ψ,R) : ∥φ∥ ≤ ℓ}

where ℓ is carefully selected as a strictly positive real number in order to ensure that

ℓ ≥
[Φ∗+ℑ∗+ℏ∗1]

Γ(w+1) +
ℏ∗0

Γ(w+2) +

[
|ξ|Φ∗+|ξ|ℑ∗+|ξ|ℏ∗1

]
ζw+1

|1−ξζ|Γ(w+2) +
|ξ|ℏ∗0ζw+2

|1−ξζ|Γ(w+3)

1− [δ+δ∗+δ∗0 ]
Γ(w+1) − δ0

Γ(w+2) −
[
|ξ|δ+|ξ|δ∗+|ξ|δ∗0

]
ζw+1

|1−ξζ|Γ(w+2) − |ξ|δ0ζw+2

|1−ξζ|Γ(w+3)

with

Φ∗ = |Φ(0)|, ℑ∗ = sup
ρ∈J

|ℑ(ρ, 0)|, ℏ∗0 = sup
ρ.σ∈D

|ℏ0(ρ, σ, 0)|, ℏ∗1 = sup
ρ.σ∈D

|ℏ1(ρ, σ, 0)|.

Subsequently, we proceed to demonstrate that the operator ℵ has a unique fixed point
within the range of Mℓ which is identical to the unique solution to the equations (1)- (2).
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Our proof entails two steps.

|(ℵφ)(r)|

=
1

Γ(w)

∫ r

0
(r− ρ)w−1

[
|Φ(φ(ρ))|+ |ℑ(ρ, φ(ρ))|+

∫ ρ

0
|ℏ0(ρ, σ, φ(σ))|dσ

+

∫ 1

0
|ℏ1(ρ, σ, φ(σ))|dσ

]
dρ+

ξ

(1− ξζ)Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
|Φ(φ(µ))|

+ |ℑ(µ, φ(µ))|+
∫ µ

0
|ℏ0(µ, ω, φ(ω))|dω +

∫ 1

0
|ℏ1(µ, ω, φ(ω))|dω

]
dµ

≤ 1

Γ(w)

∫ r

0
(r− ρ)w−1

[
|Φ(φ(ρ))− Φ(0)|+ |Φ(0)|

]
dρ

+
1

Γ(w)

∫ r

0
(r− ρ)w−1

[
|ℑ(ρ, φ(ρ))−ℑ(ρ, 0)|+ |ℑ(ρ, 0)|

]
dρ

+
1

Γ(w)

∫ r

0
(r− ρ)w−1

∫ ρ

0

[
|ℏ0(ρ, σ, φ(σ))− ℏ0(ρ, σ, 0)|+ |ℏ0(ρ, σ, 0)|

]
dσdρ

+
1

Γ(w)

∫ r

0
(r− ρ)w−1

∫ 1

0

[
|ℏ1(ρ, σ, φ(σ))− ℏ1(ρ, σ, 0)|+ |ℏ1(ρ, σ, 0)|

]
dσdρ

+
|ξ|

|1− ξζ|Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
|Φ(φ(µ))− Φ(0)|+ |Φ(0)|

]
dµ

+
|ξ|

|1− ξζ|Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
|ℑ(µ, φ(µ))−ℑ(µ, 0)|+ |ℑ(µ, 0)|

]
dµ

+
|ξ|

|1− ξζ|Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

∫ µ

0

[
|ℏ0(µ, ω, φ(ω))− ℏ0(µ, ω, 0)|

+ |ℏ0(µ, ω, 0)|
]
dωdµ+

|ξ|
|1− ξζ|Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

∫ 1

0

[
|ℏ1(µ, ω, φ(ω))

− ℏ1(µ, ω, 0)|+ |ℏ1(µ, ω, 0)|
]
dωdµ

≤ [δ∥φ∥+Φ∗]rw

Γ(w+ 1)
+

[δ∗∥φ∥+ ℑ∗]rw

Γ(w+ 1)
+

[δ0∥φ∥+ ℏ∗0]rw+1

Γ(w+ 2)
+

[δ∗0∥φ∥+ ℏ∗1]rw

Γ(w+ 1)

+
|ξ|[δ∥φ∥+Φ∗]ζw+1

|1− ξζ|Γ(w+ 2)
+

|ξ|[δ∗∥φ∥+ ℑ∗]ζw+1

|1− ξζ|Γ(w+ 2)
+

|ξ|[δ0∥φ∥+ ℏ∗0]ζw+2

|1− ξζ|Γ(w+ 3)

+
|ξ|[δ∗0∥φ∥+ ℏ∗1]ζw+1

|1− ξζ|Γ(w+ 2)

≤

[
[δ + δ∗ + δ∗0 ]

Γ(w+ 1)
+

δ0
Γ(w+ 2)

+

[
|ξ|δ + |ξ|δ∗ + |ξ|δ∗0

]
ζw+1

|1− ξζ|Γ(w+ 2)
+

|ξ|δ0ζw+2

|1− ξζ|Γ(w+ 3)

]
ℓ

+
[Φ∗ + ℑ∗ + ℏ∗1]

Γ(w+ 1)
+

ℏ∗0
Γ(w+ 2)

+

[
|ξ|Φ∗ + |ξ|ℑ∗ + |ξ|ℏ∗1

]
ζw+1

|1− ξζ|Γ(w+ 2)
+

|ξ|ℏ∗0ζw+2

|1− ξζ|Γ(w+ 3)

≤ ℓ.

Therefore ∥ℵφ∥ ≤ ℓ, which means that ℵMℓ ⊂ Mℓ.

Step II: We shall show that ℵ : Mℓ → Mℓ is a contraction. In view of the assump-
tion (∇1), we have for any φ,φ0 ∈ Mℓ and for each r ∈ ψ
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|(ℵφ)(r)− (ℵφ0)(r)|

≤ 1

Γ(w)

∫ r

0
(r− ρ)w−1

[
|Φ(φ(ρ))− Φ(φ0(ρ))|

]
dρ+

1

Γ(w)

∫ r

0
(r− ρ)w−1

[
|ℑ(ρ, φ(ρ))

−ℑ(ρ, φ0(ρ))|
]
dρ+

1

Γ(w)

∫ r

0
(r− ρ)w−1

∫ ρ

0

[
|ℏ0(ρ, σ, φ(σ))− ℏ0(ρ, σ, φ0(σ))|

]
dσdρ

+
1

Γ(w)

∫ r

0
(r− ρ)w−1

∫ 1

0

[
|ℏ1(ρ, σ, φ(σ))− ℏ1(ρ, σ, φ0(σ))|

]
dσdρ

+
|ξ|

|1− ξζ|Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
|Φ(φ(µ))− Φ(φ0(µ))|

]
dµ

+
|ξ|

|1− ξζ|Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
|ℑ(µ, φ(µ))−ℑ(µ, φ0(µ))

]
dµ

+
|ξ|

|1− ξζ|Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

∫ µ

0

[
|ℏ0(µ, ω, φ(ω))− ℏ0(µ, ω, φ0(ω))|

]
dωdµ

+
|ξ|

|1− ξζ|Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

∫ 1

0

[
|ℏ1(µ, ω, φ(ω))− ℏ1(µ, ω, φ0(ω))|

]
dωdµ

≤

[
[δ + δ∗ + δ∗0 ]

Γ(w+ 1)
+

δ0
Γ(w+ 2)

+

[
|ξ|δ + |ξ|δ∗ + |ξ|δ∗0

]
ζw+1

|1− ξζ|Γ(w+ 2)
+

|ξ|δ0ζw+2

|1− ξζ|Γ(w+ 3)

]
×∥φ− φ0∥.

Using Banach’s fixed point theorem, we will demonstrate the existence and uniqueness
estimation (9), it can be said that ℵ is a contraction. When all of the requirements of
Theorem 2.1 are satisfied, the proof of Theorem 3.1 is finished, and in that case, there
exists φ ∈ C(ψ,R) such that ℵφ = φ, which is the only solution to Problem (1)- (2)
in C (ψ,R). We will require some presumptions about this fact.

□

Theorem 3.2. Assuming the conditions (∇1), (∇2) and (∇3) are satisfied, if

|ξ|
|1− ξγ|Γ(w+ 2)

[
K+ ∥Θ∥L∞ + ∥H1∥L1 + ∥H2∥L1

]
ζw+1 < 1. (10)

Consequently, C(ψ,R) on ψ has at least one solution to the fractional Volterra-Fredholm
integro-dierential problem (1)-(2).

Proof. Initially, we convert the problem (1)-(2) into a fixed point problem by defining the
operator ℵ : C(ψ,R) → C(ψ,R) by

|(ℵφ)(r)| =
1

Γ(w)

∫ r

0
(r− ρ)w−1

[
|Φ(φ(ρ))|+ |ℑ(ρ, φ(ρ))|+

∫ ρ

0
|ℏ0(ρ, σ, φ(σ))|dσ

+

∫ 1

0
|ℏ1(ρ, σ, φ(σ))|dσ

]
dρ+

ξ

(1− ξζ)Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
|Φ(φ(µ))|

+ |ℑ(µ, φ(µ))|+
∫ µ

0
|ℏ0(µ, ω, φ(ω))|dω +

∫ 1

0
|ℏ1(µ, ω, φ(ω))|dω

]
dµ .
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Prior to commencing the proof of our theorem, we break down the operator ℵ into the
combination of two operators ℧ and ð, where,

(℧φ)(r) =
1

Γ(w)

∫ r

0
(r− ρ)w−1

[
Φ(φ(ρ)) + ℑ(ρ, φ(ρ)) +

∫ ρ

0
ℏ0(ρ, σ, φ(σ))dσ

+

∫ 1

0
ℏ1(ρ, σ, φ(σ))dσ

]
dρ

and

(ðφ)(r) =
ξ

(1− ξζ)Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
Φ(φ(µ)) + ℑ(µ, φ(µ)) +

∫ µ

0
ℏ0(µ, ω, φ(ω))dω

+

∫ 1

0
ℏ1(µ, ω, φ(ω))dω

]
dµ.

For any function φ ∈ C(ψ,R), we define the norm

∥φ∥ = sup{|φ(r)| : r ∈ ψ}.

The outcome of our existence will now be examined in various steps:

Step I :
Put

ϖ1 = sup
φ∈qℓ

|Φ(φ)|, ϖ2 = sup
(ρ,φ)∈ψ×qℓ

|ℑ(ρ, φ)|, ,

ϖ3 = sup
(ρ,σ,φ)∈G×qℓ

∫ ρ

0
|ℏ0(ρ, σ, φ(σ))|dσ, ϖ4 = sup

(ρ,σ,φ)∈G×qℓ

∫ 1

0
|ℏ1(ρ, σ, φ(σ))|dσ.

We establish the set. qℓ = {φ ∈ C(ψ,R) : ∥φ∥ ≤ ℓ} as the An assembly of components,
with ℓ representing a positive real constant.

ℓ ≥

[
|ξ|ζw+1

|1− ξζ|Γ(w+ 2)
+

1

Γ(w+ 1)

]
(ϖ1 +ϖ2 +ϖ3 +ϖ4), (11)

and prove that ℧φ+ ðφ0 ∈ qρ ⊂ C(ψ,R). For each φ,φ0 ∈ qℓ, and r ∈ ψ. It follows that

|℧φ(r)| ≤ 1

Γ(w)

∫ r

0
(r− ρ)w−1

[
∥Φ(φ(ρ))|+ |ℑ(ρ, φ(ρ))|+

∫ ρ

0
|ℏ0(ρ, σ, φ(σ))|dσ

+

∫ 1

0
|ℏ1(ρ, σ, φ(σ))|dσ

]
dρ

≤ 1

Γ(w)

∫ r

0
(r− ρ)w−1

[
sup
φ∈qℓ

|Φ(φ)|+ sup
(ρ,φ)∈ψ×qℓ

|ℑ(ρ, φ)|

+ sup
(ρ,σ,φ)∈G×qℓ

∫ ρ

0
|ℏ0(ρ, σ, φ(σ))|dσ + sup

(ρ,σ,φ)∈G×qℓ

∫ 1

0
|ℏ1(ρ, σ, φ(σ))|dσ

]
dρ

≤ ϖ1 +ϖ2 +ϖ3 +ϖ4

Γ(w+ 1)
.

Thus,

∥℧φ(r)∥ ≤ ϖ1 +ϖ2 +ϖ3 +ϖ4

Γ(w+ 1)
. (12)
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In a similar way, for φ0 ∈ qℓ and r ∈ ψ, we find

|ðφ0(r)| ≤
|ξ|

|1− ξζ|Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
|Φ(φ0(µ))|+ |ℑ(µ, φ0(µ))|+

∫ µ

0
|ℏ0(µ, ω, φ0(ω))|dω

+

∫ 1

0
|ℏ1(µ, ω, φ0(ω))|dω

]
dµ

≤ |ξ|
|1− ξζ|Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
sup
φ0∈qℓ

|Φ(φ0)|+ sup
(µ,φ0)∈ψ×qℓ

|ℑ(µ, φ0)|

+ sup
(µ,ω,φ0(ω)∈G×qρ

∫ µ

0
|ℏ0(µ, ω, φ0(ω))|dω + sup

(µ,ω,φ0(ω)∈G×qℓ

∫ 1

0
|ℏ1(µ, ω, φ0(ω))|dω

]
dµ

≤ |ξ|[ϖ1 +ϖ2 +ϖ3 +ϖ4]

|1− ξζ|Γ(w+ 2)
ζw+1.

Therefore,

∥ðφ0(r)∥ ≤ |ξ|[ϖ1 +ϖ2 +ϖ3 +ϖ4]

|1− ξζ|Γ(w+ 2)
ζw+1. (13)

As a result, considering the inequalities (12)- (13), we obtain

∥℧φ+ ðφ0∥ ≤ ∥℧φ∥+ ∥ðφ0∥

≤ ϖ1 +ϖ2 +ϖ3 +ϖ4

Γ(w+ 1)
+

|ξ|[ϖ1 +ϖ2 +ϖ3 +ϖ4]

|1− ξζ|Γ(w+ 1)
ζw+1

≤

[
|ξ|ζw+1

|1− ξζ|Γ(w+ 2)
+

1

Γ(w+ 1)

]
(ϖ1 +ϖ2 +ϖ3 +ϖ4)

≤ ℓ.

This indicates that ℧φ+ ðφ0 ∈ qℓ.
Step II :

We establish that ð functions as a contraction mapping on qℓ. By referring to the operator’s
definition and employing Fubini’s theorem, we can express this as follows:

ðφ(r) =
ξ

(1− ξζ)Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
Φ(φ(µ)) + ℑ(µ, φ(µ))

+

∫ µ

0
ℏ0(µ, ω, φ(ω))dω +

∫ 1

0
ℏ1(µ, ω, φ(ω))dω

]
dµ

=
ξ

(1− ξζ)Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
Φ(φ(µ)) + ℑ(µ, φ(µ))

]
dµ

+
ξ

(1− ξζ)Γ(w+ 1)

∫ ζ

0

∫ ζ

ω
(ζ − µ)w

[
ℏ0(µ, ω, φ(ω)) + ℏ1(µ, ω, φ(ω))

]
dµdω.
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Hence, for any φ,φ0 ∈ qℓ and r ∈ ψ we can find

|ðφ(r)− ðφ0(r)| ≤ |ξ|
(|1− ξζ|)Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
|Φ(φ(µ))− Φ(φ0(µ))|

+ |ℑ(µ, φ(µ))−ℑ(µ, φ0(µ)|
]
dµ

+
|ξ|

(|1− ξζ|)Γ(w+ 1)

∫ ζ

0

∫ ζ

ω
(ζ − µ)w

[
|ℏ0(µ, ω, φ(ω))

− ℏ0(µ, ω, φ0(ω))|+ |ℏ1(µ, ω, φ(ω))− ℏ1(µ, ω, φ0(ω))|
]
dµdω

≤ |ξ|
(|1− ξζ|)Γ(w+ 1)

∫ ζ

0
(ζ − µ)w

[
K|φ(µ)− φ0(µ)|

+ Θ(µ)|φ(µ)− φ0(µ)|
]
dµ

+
|ξ|

(|1− ξζ|)Γ(w+ 1)

∫ ζ

0

∫ ζ

ω
(ζ − ω)w

[
H1(µ)|φ(ω)− φ0(ω)|

+ H1(µ)|φ(ω)− φ0(ω)|
]
dµdω

≤ |ξ|
(|1− ξζ|)Γ(w+ 2)

[
K∥φ− φ0∥+ ∥Θ∥L∞∥φ− φ0∥

+ (∥H1∥L1 + ∥H2∥L1)∥φ− φ0∥

]
ζw+1

≤ |ξ|
(|1− ξζ|)Γ(w+ 2)

[
K+ ∥Θ∥L∞ + (∥H1∥L1 + ∥H2∥L1)

]
ζw+1Ω.

Thus,

|ðφ− ðφ0| ≤
|ξ|

(|1− ξζ|)Γ(w+ 2)

[
K+ ∥Θ∥L∞∥+ ∥H1∥L1 + ∥H2∥L1 |

]
ζw+1∥φ− φ0∥.

Thus, utilizing equation (10), we can deduce that ð functions as a contractions on a qℓ.
Step III:

To demonstrate that ℧ is a compact operator, we claim that ¯℧(qℓ) is a compact subset of
C(ψ,R). We merely need to demonstrate this to do so. ¯℧(qℓ) is a uniformly bounded and
equicontinuous subset of C(ψ,R).. To start, it is evident by inequality (12) that ¯℧(qℓ) is
uniformly bounded. Next, we will prove that ¯℧(qℓ) is an equicontinuous subset of C(ψ,R).
We have for any of these. φ ∈ qℓ and for each r1, r2 ∈ ψ where r1 ≤ r2:

|℧φ(r1)− ℧φ(r2)|

=
1

Γ(w)

∫ r2

r1

|(r1 − ρ)w−1|
[
|Φ(φ(ρ))|+ |ℑ(ρ, φ(ρ))|

+

∫ ρ

0
|ℏ0(ρ, σ, φ(σ))|dσ +

∫ 1

0
|ℏ1(ρ, σ, φ(σ))|dσ

]
dρ

+
1

Γ(w)

∫ r1

0
|(r2 − ρ)w−1 − (r1 − ρ)w−1|

[
|Φ(φ(ρ))|+ |ℑ(ρ, φ(ρ))|
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+

∫ ρ

0
|ℏ0(ρ, σ, φ(σ))|dσ +

∫ 1

0
|ℏ1(ρ, σ, φ(σ))|dσ

]
dρ

≤ 1

Γ(w)

[ ∫ r2

r1

|(r1 − ρ)w−1|+
∫ r1

0
|(r2 − ρ)w−1 − (r1 − ρ)w−1|dρ

]
×
[
sup
φ∈qℓ

|Φ(φ)|+ sup
(ρ,φ)∈ψ×qℓ

|ℑ(ρ, φ)|

+ sup
(ρ,σ,φ)∈G×qℓ

∫ ρ

0
|ℏ0(ρ, σ, φ(σ))|dσ + sup

(ρ,σ,φ)∈G×qℓ

∫ 1

0
|ℏ1(ρ, σ, φ(σ))|dσ

]
≤ ϖ1 +ϖ2 +ϖ3 +ϖ4

Γ(w+ 1)
[2(r2 − r1)

w + rw2 − rw1 ]

≤ ϖ1 +ϖ2 +ϖ3 +ϖ4

Γ(w+ 1)
[(r2 − r1)

w]

−→ 0 as r1 → r2.

Then

∥℧φ(r1)− ℧φ(r2)∥ → 0,

which means that ℧(qℓ) is equicontinuous. □

Lastly, considering the continuity of Φ,ℑ, ℏ0 and ℏ1, it can be inferred that the opera-
tor ℧ : qℓ −→ qℓ is continuous. Consequently, the operator ℧ is compact on qℓ. With this,
all the conditions of Theorem 2.2 are satisfied. Thus, the operator ℵ = ℧+ ð possesses a
fixed point in qℓ. As a result, the fractional Volterra-Fredholm integro-differential problem
(2) has a solution φ ∈ C(ψ,R). This concludes the proof of Theorem 3.2.

4. An Application

Example 1. Consider the following nonlocal fractional integro-differential problem:

CD
1
4

0+
φ(r) =

1

20
cos(φ(r)) +

φ(r)

30 + e−2r
+

∫ r

0

e2(σ−r)

45 + er−1
φ(σ)dσ +

∫ 1

0

eσr

25
φ(σ)dσ (14)

φ(0) =
1

15

∫ 0.5

0
φ(σ)dσ. (15)

For φ,φ0 ∈ R+ and r ∈ [0, 1] we have:

|Φ(φ)− Φ(φ0)| ≤
1

20
∥φ− φ0∥

|ℑ(r, φ)−ℑ(r, φ0)| ≤
1

30
∥φ− φ0∥

|ℏ0(r, σ, φ(σ))− ℏ0(r, σ, φ0(σ))| ≤
1

45
∥φ− φ0∥

and

|ℏ1(r, σ, φ(σ))− ℏ1(r, σ, φ0(σ))| ≤
1

25
∥φ− φ0∥.

Currently, the conditions (∆1) − (∆3) are fulfilled, given that: δ = 1
20 , δ

∗ = 1
30 , δ0 =

1
45 and δ∗0 = 1

25 , subsequently, through a series of calculations, it is determined that.
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Be =

[
[δ + δ∗ + δ∗0 ]

Γ(w+ 1)
+

δ0
Γ(w+ 2)

+

[
|ξ|δ + |ξ|δ∗ + |ξ|δ∗0

]
ζw+1

|1− ξζ|Γ(w+ 2)
+

|ξ|δ0ζw+2

|1− ξζ|Γ(w+ 3)

]
= 0.33 < 1.

Therefore, by applying Theorem 3.1 the problem (14)-(15) has a unique solution on ψ.

Example 2. Consider the following nonlocal fractional Volterra-Fredholm integro-differential
problem:

CD
1
3

0+
φ(r) =

1

30
cos2(φ(r)) +

2φ(r)

15 + 3e2r
+

∫ r

0

2e3r

7 + eσ
φ(σ)dσ +

∫ 1

0

er+1

1 + 7e−σ
φ(σ)dσ (16)

φ(0) =
1

12

∫ 0.3

0
φ(σ)dσ. (17)

Then for φ,φ0 ∈ R+ and r ∈ [0, 1] we have:

|Φ(φ)− Φ(φ0)| ≤
1

15
∥φ− φ0∥

|ϕ(z, φ)− ϕ(z, φ0)| ≤
2

15 + 3e2r
∥φ− φ0∥

|ℏ0(r, σ, φ(σ))− ℏ0(r, σ, φ0(σ))| ≤
1

5
e3r∥φ− φ0∥

and

|ℏ1(r, σ, φ(σ))− ℏ1(r, σ, φ0(σ))| ≤
1

8
er+1∥φ− φ0∥.

Currently, the conditions (∇1), (∇2) and (∇3) are fulfilled, given that K = 1
15 ,

Θ(r) = 2
15+3e2r

, H1(z) =
1
5e

3r and H2(z) =
1
8e
z+1, where ∥Θ∥L∞ = 1

9 ,

∥H1∥L1 = 1
15(e

3 − 1), ∥H2∥L1 = e
8(e− 1) subsequently, through a series of calculations, it

is determined that.

|ξ|
|1− ξγ|Γ(w+ 2)

[
K+ ∥Θ∥L∞ + ∥H1∥L1 + ∥H2∥L1

]
ζw+1 = 0.1461 < 1.

The confirms that the (10) condition is true. This leads us to conclude that the nonlocal
(FVFIDE) problem (16)-(17) has a solution on ψ by using theorem 3.2.
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