dc.contributor.author | Berberler, Zeynep Nihan | en_US |
dc.contributor.author | Berberler, Murat Ersen | en_US |
dc.date.accessioned | 2020-10-13T13:40:10Z | |
dc.date.available | 2020-10-13T13:40:10Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Berberler, Z. N. & Berberler, M. E. (2018). Independently saturated graphs. TWMS Journal Of Applied And Engineering Mathematics, 8(1), 44-50. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2642 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/97-vol8no1/320 | |
dc.description.abstract | The independence saturation number IS(G) of a graph G = (V, E) is defined as min{IS(V ) : v ? V } , where IS(v) is the maximum cardinality of an independent set that contains v. In this paper, we consider and compute exact formulae for the independence saturation in specific graph families and composite graphs. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal Of Applied And Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Independence | en_US |
dc.subject | Independence saturation | en_US |
dc.subject | Graph theory | en_US |
dc.title | Independently saturated graphs | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 8 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 44 | |
dc.identifier.endpage | 50 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |