Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBerberler, Zeynep Nihanen_US
dc.contributor.authorBerberler, Murat Ersenen_US
dc.date.accessioned2020-10-13T13:40:10Z
dc.date.available2020-10-13T13:40:10Z
dc.date.issued2018
dc.identifier.citationBerberler, Z. N. & Berberler, M. E. (2018). Independently saturated graphs. TWMS Journal Of Applied And Engineering Mathematics, 8(1), 44-50.en_US
dc.identifier.issn2146-1147en_US
dc.identifier.issn2587-1013en_US
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2642
dc.identifier.urihttp://jaem.isikun.edu.tr/web/index.php/archive/97-vol8no1/320
dc.description.abstractThe independence saturation number IS(G) of a graph G = (V, E) is defined as min{IS(V ) : v ? V } , where IS(v) is the maximum cardinality of an independent set that contains v. In this paper, we consider and compute exact formulae for the independence saturation in specific graph families and composite graphs.en_US
dc.language.isoenen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal Of Applied And Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectIndependenceen_US
dc.subjectIndependence saturationen_US
dc.subjectGraph theoryen_US
dc.titleIndependently saturated graphsen_US
dc.typeArticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume8
dc.identifier.issue1
dc.identifier.startpage44
dc.identifier.endpage50
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess