dc.contributor.author | Boruah, Khirod | en_US |
dc.contributor.author | Hazarika, Bipan | en_US |
dc.date.accessioned | 2020-10-19T11:27:20Z | |
dc.date.available | 2020-10-19T11:27:20Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Boruah, K. & Hazarika, B. (2018). Bigeometric integral calculus. TWMS Journal of Applied and Engineering Mathematics, 8(2), 374-385. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2675 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/99-vol8no2/357 | |
dc.description.abstract | Objective of this paper is to discuss about the properties of indefinite and definite bigeometric integration. We also discuss about some applications of bigeometric integration. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal of Applied and Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Bigeometric differentiation | en_US |
dc.subject | G-derivative | en_US |
dc.subject | Geometric real numbers | en_US |
dc.subject | Geometric arithmetic | en_US |
dc.title | Bigeometric integral calculus | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 8 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 374 | |
dc.identifier.endpage | 385 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |