Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorJawdat, Jamilaen_US
dc.date.accessioned2020-10-20T07:26:52Z
dc.date.available2020-10-20T07:26:52Z
dc.date.issued2018
dc.identifier.citationJawdat, J. (2018). Best coapproximation in L∞(µ, X). TWMS Journal of Applied and Engineering Mathematics, 8(2), 448-453.en_US
dc.identifier.issn2146-1147en_US
dc.identifier.issn2587-1013en_US
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2679
dc.identifier.urihttp://jaem.isikun.edu.tr/web/index.php/archive/99-vol8no2/363
dc.description.abstractLet X be a real Banach space and let G be a closed subset of X. The set G is called coproximinal in X if for each x ? X, there exists y? ? G such thaten_US
dc.description.abstracty ? y?en_US
dc.description.abstract?en_US
dc.description.abstractx – yen_US
dc.description.abstract, for all y ? G. In this paper, we study coproximinality of L?(µ, G) in L?(µ, X), when G is either separable or reflexive coproximinal subspace of X.en_US
dc.language.isoenen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal of Applied and Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectBest coapproximationen_US
dc.subjectCoproximinal seten_US
dc.subjectEssentially bounded functionsen_US
dc.titleBest coapproximation in L?(µ, X)en_US
dc.typeArticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume8
dc.identifier.issue2
dc.identifier.startpage448
dc.identifier.endpage453
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess