dc.contributor.author | Jawdat, Jamila | en_US |
dc.date.accessioned | 2020-10-20T07:26:52Z | |
dc.date.available | 2020-10-20T07:26:52Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Jawdat, J. (2018). Best coapproximation in L∞(µ, X). TWMS Journal of Applied and Engineering Mathematics, 8(2), 448-453. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2679 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/99-vol8no2/363 | |
dc.description.abstract | Let X be a real Banach space and let G be a closed subset of X. The set G is called coproximinal in X if for each x ? X, there exists y? ? G such that | en_US |
dc.description.abstract | y ? y? | en_US |
dc.description.abstract | ? | en_US |
dc.description.abstract | x – y | en_US |
dc.description.abstract | , for all y ? G. In this paper, we study coproximinality of L?(µ, G) in L?(µ, X), when G is either separable or reflexive coproximinal subspace of X. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal of Applied and Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Best coapproximation | en_US |
dc.subject | Coproximinal set | en_US |
dc.subject | Essentially bounded functions | en_US |
dc.title | Best coapproximation in L?(µ, X) | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 8 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 448 | |
dc.identifier.endpage | 453 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |