dc.contributor.author | Muntaner-Batle, Francesc Antoni | en_US |
dc.contributor.author | Vivin, Vernold J. | en_US |
dc.contributor.author | Venkatachalam, M. | en_US |
dc.date.accessioned | 2020-10-26T10:57:51Z | |
dc.date.available | 2020-10-26T10:57:51Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Muntaner-Batle, F. A., Vivin, V. J. & Venkatachalam, M. (2019). Harmonious coloring of multicopy of complete graphs. TWMS Journal Of Applied And Engineering Mathematics, 9(2), 384-395. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2727 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/101-vol9no2/419 | |
dc.description.abstract | In this paper, we find the harmonious chromatic number of multicopy of complete graphs Kn. We generalize the result ?H ((n + 2)Kn) > n + 1 2 ! given in [8] and also further improve the result to ?H((n + 2)Kn) ? n + 1 2 ! + 3, ? n > 8. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal Of Applied And Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Harmonious coloring | en_US |
dc.subject | Corona product | en_US |
dc.subject | Pigeonhole principle | en_US |
dc.title | Harmonious coloring of multicopy of complete graphs | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 9 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 384 | |
dc.identifier.endpage | 395 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |