dc.contributor.author | Lashkaripour, Rahmatollah | en_US |
dc.contributor.author | Baghani, Hamid | en_US |
dc.contributor.author | Ahmadi, Zahra | en_US |
dc.date.accessioned | 2020-11-05T13:41:35Z | |
dc.date.available | 2020-11-05T13:41:35Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Lashkaripour, R., Baghani, H. & Ahmadi, Z. (2020). A fixed point problem via simulation functions in incomplete metric spaces with its application. TWMS Journal of Applied and Engineering Mathematics, 10(1), 220-231. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2808 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/104-vol10no1/507 | |
dc.description.abstract | In this paper, firstly, we review the notion of the SO-complete metric spaces. This notion let us to consider some fixed point theorems for single-valued mappings in incomplete metric spaces. Secondly, as motivated by the recent work of A.H. Ansari et al. [J. Fixed Point Theory Appl. (2017), 1145–1163], we obtain that an existence and uniqueness result for the following problem: finding x ? X such that x = T x, Ax R? Bx and Cx R? Dx, where (X, d) is an incomplete metric space equipped with the two binary relations R? and R?, A, B, C, D : X ? X are discontinuous mappings and T : X ? X satisfies in a new contractive condition. This result is a real generalization of main theorem of A.H. Ansari’s. Finally, we provide some examples for our results and as an application, we find that the solutions of a differential equation. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal of Applied and Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Fixed point | en_US |
dc.subject | Constraint inequalities | en_US |
dc.subject | ⊥-Z-contraction | en_US |
dc.subject | SO-complete metric space | en_US |
dc.subject | Fractional differential equation | en_US |
dc.subject | Orthogonal sets | en_US |
dc.title | A fixed point problem via simulation functions in incomplete metric spaces with its application | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 10 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 220 | |
dc.identifier.endpage | 231 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |