dc.contributor.author | Azimi, Mohammad Reza | en_US |
dc.contributor.author | Akbarbaglu, İbrahim | en_US |
dc.contributor.author | Abedi, Fahimeh | en_US |
dc.date.accessioned | 2020-11-06T08:32:11Z | |
dc.date.available | 2020-11-06T08:32:11Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Azimi, M. R., Akbarbaglu, İ. & Abedi, F. (2020). Bishop’s property (β) and weighted conditional type operators in k-quasi class A*n. TWMS Journal of Applied and Engineering Mathematics, 10(1), 241-250. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2810 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/104-vol10no1/509 | |
dc.description.abstract | An operator T is said to be k-quasi class A*n operator if T*? (|T??¹|²/??¹? |T*|² ) T? ? 0, for some positive integers n and k. In this paper, we prove that the k-quasi class A*n operators have Bishop, s property (?). Then, we give a necessary and sufficient condition for T ?S to be a k-quasi class A*n operator, whenever T and S are both non-zero operators. Moreover, it is shown that the Riesz idempotent for a non-zero isolated point ?0 of a k-quasi class A*n operator T say R?, is self-adjoint and ran(R?) = ker(T ???) = ker(T ???)*. Finally, as an application in the last section, a necessary and sufficient condition is given in such a way that the weighted conditional type operators on L² (?), defined by Tw,u(f) := wE(uf), belong to k-quasi- A*n class. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal of Applied and Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Weighted translation | en_US |
dc.subject | Pre-frame | en_US |
dc.subject | Conditional expectation | en_US |
dc.subject | Measurable function | en_US |
dc.subject | Asterisk-class | en_US |
dc.subject | Tensor-products | en_US |
dc.subject | Isolated points | en_US |
dc.subject | Class-A | en_US |
dc.subject | Spectrum | en_US |
dc.title | Bishop’s property (?) and weighted conditional type operators in k-quasi class A*n | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 10 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 241 | |
dc.identifier.endpage | 250 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |