dc.contributor.author | D’Souza, Vilma | en_US |
dc.contributor.author | Kumari, Shantha K. | en_US |
dc.date.accessioned | 2020-11-09T13:05:26Z | |
dc.date.available | 2020-11-09T13:05:26Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | D’Souza, V. & Kumari, S. K. (2020). On two identities for I-function. TWMS Journal Of Applied And Engineering Mathematics, 10(2), 428-433. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2830 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/105-vol10no2/533 | |
dc.description.abstract | In this research note, two interesting identities involving I-function of one variable introduced by Rathie have been derived. These results enable us to split a particular I-function into the sum of four I-functions. A few new as well as known special cases of our main results have been obtained. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal Of Applied And Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | I-function | en_US |
dc.subject | Mellin-Barnes integral | en_US |
dc.subject | Generalized hypergeometric function | en_US |
dc.subject | Hypergeometric series | en_US |
dc.subject | Appell functions | en_US |
dc.title | On two identities for I-function | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 10 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 428 | |
dc.identifier.endpage | 433 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |