Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBouzenada, Smailen_US
dc.contributor.authorChettouh, Raoudaen_US
dc.date.accessioned2020-11-10T11:03:52Z
dc.date.available2020-11-10T11:03:52Z
dc.date.issued2020
dc.identifier.citationBouzenada, S. & Chettouh, R. (2020). Numerical range and sub-self-adjoint operators. TWMS Journal Of Applied And Engineering Mathematics, 10(2), 492-498.en_US
dc.identifier.issn2146-1147en_US
dc.identifier.issn2587-1013en_US
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/2837
dc.identifier.urihttp://jaem.isikun.edu.tr/web/index.php/archive/105-vol10no2/540
dc.description.abstractIn this paper, we show that the numerical range of a bounded linear operatör T on a complex Hilbert space is a line segment if and only if there are scalars ? and µ such that T ? = ?T + µI, and we determine the equation of the straight support of this numerical range in terms of ? and µ. An operator T is called sub-self-adjoint if their numerical range is a line segment. The class of sub-self-adjoint operators contains every self-adjoint operator and contained in the class of normal operators. We show that this class is uniformly closed, invariant under unitary equivalence and invariant under affine transformation. Some properties of the sub-self-adjoint operators and their numerical ranges are investigated.en_US
dc.language.isoenen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal Of Applied And Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectNumerical rangeen_US
dc.subjectSelf-adjoint operatoren_US
dc.subjectNormal operatoren_US
dc.subjectHyperbolic polynomialen_US
dc.subjectBlaschke producten_US
dc.titleNumerical range and sub-self-adjoint operatorsen_US
dc.typeArticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume10
dc.identifier.issue2
dc.identifier.startpage492
dc.identifier.endpage498
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess