Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorRao, M. V. Chakradharaen_US
dc.contributor.authorVenkatesh, K. A.en_US
dc.contributor.authorLakshmi Dasari, Venkataen_US
dc.date.accessioned2021-01-20T09:57:54Z
dc.date.available2021-01-20T09:57:54Z
dc.date.issued2021
dc.identifier.citationRao, M. V. C., Venkatesh, K. A. & Lakshmi Dasari, V. (2021). The minimum mean monopoly energy of a graph. TWMS Journal of Applied and Engineering Mathematics, 11(SI), 144-153.en_US
dc.identifier.issn2146-1147en_US
dc.identifier.issn2587-1013en_US
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/3030
dc.identifier.urihttp://jaem.isikun.edu.tr/web/index.php/archive/109-vol11-special-issue/643
dc.description.abstractThe motivation for the study of the graph energy comes from chemistry, where the research on the so-called total pi - electron energy can be traced back until the 1930s. This graph invariant is very closely connected to a chemical quantity known as the total pi - electron energy of conjugated hydro carbon molecules. In recent times analogous energies are being considered, based on Eigen values of a variety of other graph matrices. In 1978, I.Gutman [1] defined energy mathematically for all graphs. Energy of graphs has many mathematical properties which are being investigated. The ordinary energy of an undirected simple finite graph G is defined as the sum of the absolute values of the Eigen values of its associated matrix. i.e. if mu(1), mu(2), ..., mu(n) are the Eigen values of adjacency matrix A(G), then energy of graph is Sigma(G) = Sigma(n)(i=1) vertical bar mu(i)vertical bar Laura Buggy, Amalia Culiuc, Katelyn Mccall and Duyguyen [9] introduced the more general M-energy or Mean Energy of G is then defined as E-M (G) = Sigma(n)(i=1)vertical bar mu(i) - (mu) over bar vertical bar, where (mu) over bar vertical bar is the average of mu(1), mu(2), ..., mu(n). A subset M subset of V (G), in a graph G (V, E), is called a monopoly set of G if every vertex v is an element of (V - M) has at least d(v)/2 neighbors in M. The minimum cardinality of a monopoly set among all monopoly sets in G is called the monopoly size of G, denoted by mo(G) Ahmed Mohammed Naji and N.D.Soner [7] introduced minimum monopoly energy E-MM [G] of a graph G. In this paper we are introducing the minimum mean monopoly energy, denoted by E-MM(M) (G), of a graph G and computed minimum monopoly energies of some standard graphs. Upper and lower bounds for E-MM(M) (G)are also established.en_US
dc.language.isoenen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal of Applied and Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectMonopoly seten_US
dc.subjectMonopoly sizeen_US
dc.subjectMinimum monopoly matrixen_US
dc.subjectMinimum monopoly Eigenvaluesen_US
dc.subjectMinimum monopoly energy and minimum mean monopoly energy of a graphen_US
dc.titleThe minimum mean monopoly energy of a graphen_US
dc.typeArticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume11
dc.identifier.issueSI
dc.identifier.startpage144
dc.identifier.endpage153
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess