Abstract
The study of semi bent functions (2- plateaued Boolean function) has attracted the attention of many researchers due to their cryptographic and combinatorial properties. In this paper, we have given the algebraic construction of semi bent functions defined over the finite field F?? (n even) using the notion of trace function and Gold power exponent. Algebraically constructed semi bent functions have some special cryptographical properties such as high nonlinearity, algebraic immunity, and low correlation immunity as expected to use them effectively in cryptosystems. We have illustrated the existence of these properties with suitable examples.