dc.contributor.author | Adhya, Sugata | en_US |
dc.contributor.author | Debray, Atasi | en_US |
dc.date.accessioned | 2021-04-09T12:07:08Z | |
dc.date.available | 2021-04-09T12:07:08Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Adhya, S. & Debray, A. (2021). On Lebesgue property for fuzzy metric spaces. TWMS Journal of Applied and Engineering Mathematics, 11(2), 552-560. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/3131 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/111-vol11-no2/721 | |
dc.description.abstract | We provide several characterizations of the Lebesgue property for fuzzy metric spaces. It is known that a fuzzy metric space is Lebesgue if and only if every real-valued continuous function is uniformly continuous. Here we show that it suffices to examine uniform continuity of bounded real-valued continuous functions for characterizing Lebesgue property in fuzzy setting. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal of Applied and Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Fuzzy metric space | en_US |
dc.subject | Uniformly continuous function | en_US |
dc.subject | Lebesgue property | en_US |
dc.title | On Lebesgue property for fuzzy metric spaces | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 11 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 552 | |
dc.identifier.endpage | 560 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |