Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSanthakumaran, A. P.en_US
dc.contributor.authorRaghu T. Venkataen_US
dc.contributor.authorGanesamoorthy, K.en_US
dc.date.accessioned2021-07-28T10:07:33Z
dc.date.available2021-07-28T10:07:33Z
dc.date.issued2021
dc.identifier.citationSanthakumaran, A. P., Raghu T. V. & Ganesamoorthy, K. (2021). Minimal restrained monophonic sets in graphs. TWMS Journal of Applied and Engineering Mathematics, 11(3), 762-771.en_US
dc.identifier.issn2146-1147en_US
dc.identifier.issn2587-1013en_US
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/3195
dc.identifier.urihttp://jaem.isikun.edu.tr/web/index.php/archive/112-vol11-no3/736
dc.description.abstractFor a connected graph G = (V, E) of order at least two, a restrained monophonic set S of a graph G is a monophonic set such that either S = V or the subgraph induced by V ?S has no isolated vertices. The minimum cardinality of a restrained monophonic set of G is the restrained monophonic number of G and is denoted by mr(G). A restrained monophonic set S of G is called a minimal restrained monophonic set if no proper subset of S is a restrained monophonic set of G. The upper restrained monophonic number of G, denoted by m+r (G), is defined as the maximum cardinality of a minimal restrained monophonic set of G. We determine bounds for it and find the upper restrained monophonic number of certain classes of graphs. It is shown that for any two positive integers a, b with 2 ? a ? b, there is a connected graph G with mr(G) = a and m+r (G) = b. Also, for any three positive integers a, b and n with 2 ? a ? n ? b, there is a connected graph G with mr(G) = a, m+r (G) = b and a minimal restrained monophonic set of cardinality n. If p, d and k are positive integers such that 2 ? d ? p ? 2,k ? 3, k 6= p ? 1 and p ? d ? k ? 0, then there exists a connected graph G of order p,monophonic diameter d and m+r (G) = k.en_US
dc.description.sponsorshipThe third author’s research work has been supported by NBHM, INDIA, with the project No. NBHM/R.P.29/2015/Fresh/157.en_US
dc.language.isoenen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal of Applied and Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectRestrained monophonic seten_US
dc.subjectRestrained monophonic numberen_US
dc.subjectMinimal restrained monophonic seten_US
dc.subjectUpper restrained monophonic numberen_US
dc.titleMinimal restrained monophonic sets in graphsen_US
dc.typeArticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume11
dc.identifier.issue3
dc.identifier.startpage762
dc.identifier.endpage771
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess