dc.contributor.author | Amourah, Ala | en_US |
dc.date.accessioned | 2021-10-28T08:49:44Z | |
dc.date.available | 2021-10-28T08:49:44Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Amourah, A. (2021). Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to (p, q) −Lucas polynomials. TWMS Journal Of Applied And Engineering Mathematics, 11(4), 959-965. | en_US |
dc.identifier.issn | 2146-1147 | |
dc.identifier.issn | 2587-1013 | |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/3245 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/113-vol11-no4/755 | |
dc.description.abstract | In this paper, a subclass of analytic and bi-univalent functions by means of (p, q) − Lucas polynomials is introduced. Certain coefficients bounds for functions belonging to this subclass are obtained. Furthermore, the Fekete-Szeg¨o problem for this subclass is solved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Analytic functions | en_US |
dc.subject | Bi-univalent functions | en_US |
dc.subject | Fekete-Szegö problem | en_US |
dc.subject | Lucas polynomials | en_US |
dc.title | Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to (p, q) −Lucas polynomials | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.relation.journal | TWMS Journal Of Applied And Engineering Mathematics | en_US |
dc.identifier.volume | 11 | |
dc.identifier.issue | 4 | |
dc.identifier.startpage | 959 | |
dc.identifier.endpage | 965 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |