dc.contributor.author | Titus, Pritty | en_US |
dc.contributor.author | Ganesamoorthy, Kathiresan | en_US |
dc.date.accessioned | 2021-11-01T12:51:46Z | |
dc.date.available | 2021-11-01T12:51:46Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Titus, P. & Ganesamoorthy, K. (2021). On the connected detour monophonic number of a graph. TWMS Journal Of Applied And Engineering Mathematics, 11(4), 966-974. | en_US |
dc.identifier.issn | 2146-1147 | |
dc.identifier.issn | 2587-1013 | |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/3246 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/113-vol11-no4/756 | |
dc.description.abstract | For a connected graph G = (V, E) of order at least two, a connected detour monophonic set S of G is called a minimal connected detour monophonic set if no proper subset of S is a connected detour monophonic set of G. The upper connected detour monophonic number of G, denoted by dm+c (G), is defined as the maximum cardinality of a minimal connected detour monophonic set of G. We determine bounds for it and find the same for some special classes of graphs. For any three positive integers a, b and n with 6 ≤ a ≤ n ≤ b, there is a connected graph G with dmc(G) = a, dm+c (G) = b and a minimal connected detour monophonic set of cardinality n. | en_US |
dc.description.sponsorship | The first author’s research has been supported by DST Project No. SR/S4/MS:570/09. | en_US |
dc.description.sponsorship | The second author’s research has been supported by NBHM. Project no: NBHM / R. P. 29/2015 / Fresh / 157. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Connected detour monophonic number | en_US |
dc.subject | Connected detour monophonic set | en_US |
dc.subject | Detour monophonic set | en_US |
dc.subject | Minimal connected detour monophonic set | en_US |
dc.subject | Upper connected detour monophonic number | en_US |
dc.title | On the connected detour monophonic number of a graph | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.relation.journal | TWMS Journal Of Applied And Engineering Mathematics | en_US |
dc.identifier.volume | 11 | |
dc.identifier.issue | 4 | |
dc.identifier.startpage | 966 | |
dc.identifier.endpage | 974 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |