dc.contributor.author | Tarek, Bahloul | en_US |
dc.date.accessioned | 2021-11-02T18:10:32Z | |
dc.date.available | 2021-11-02T18:10:32Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Tarek, B. (2021). The non-homogeneous of semi-linear parabolic equation with integral conditions. TWMS Journal Of Applied And Engineering Mathematics, 11(4), 1110-1115. | en_US |
dc.identifier.issn | 2146-1147 | |
dc.identifier.issn | 2587-1013 | |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/3259 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/113-vol11-no4/768 | |
dc.description.abstract | In this paper we introduce another method to establish finite time blow-up. This method, introduce by Levine–Payne in the papers [3], [4] and is due to Levine (1973), uses the concavity of an auxiliary function I(t). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Blow-up | en_US |
dc.subject | Concavity method | en_US |
dc.subject | Integral condition | en_US |
dc.subject | Semi-linear parabolic equations | en_US |
dc.title | The non-homogeneous of semi-linear parabolic equation with integral conditions | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.relation.journal | TWMS Journal Of Applied And Engineering Mathematics | en_US |
dc.identifier.volume | 11 | |
dc.identifier.issue | 4 | |
dc.identifier.startpage | 1110 | |
dc.identifier.endpage | 1115 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |