Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKaraman, Baharen_US
dc.date.accessioned2022-10-04T16:57:54Z
dc.date.available2022-10-04T16:57:54Z
dc.date.issued2022
dc.identifier.citationKaraman, B. (2022). New wave form solutions of time-fractional Gardner equation via fractional Riccati expansion method. TWMS Journal Of Applied And Engineering Mathematics, 12(4), 1329-1335.en_US
dc.identifier.issn2146-1147en_US
dc.identifier.issn2587-1013en_US
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/4944
dc.identifier.urihttp://jaem.isikun.edu.tr/web/index.php/archive/117-vol12no4/916
dc.description.abstractIn this current paper, the fractional Riccati expansion method is proposed for obtaining the new exact solutions of the time-fractional Gardner equation. The fractional derivative is considered in the sense of Jumarie’s modified Riemann-Liouville fractional derivative (JMRFD). A travelling wave transformation is firstly utilized to convert the nonlinear fractional partial differential equation (NFPDE) into a fractional ordinary differential equation (FODE). Our main intention in this present paper is to indicate that the suggested method is appropriate to obtain the new exact solutions of fractional partial differential equations. It can be said that the main advantage of the mentioned scheme is very simple and easy to apply. As a result, all the obtained results are presented in the paper.en_US
dc.language.isoenen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal Of Applied And Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectTime-fractional Gardner equationen_US
dc.subjectFractional Riccati expansion methoden_US
dc.subjectJumarie’s modified Riemann-Liouville derivativeen_US
dc.subjectMittag-Leffler functionen_US
dc.titleNew wave form solutions of time-fractional Gardner equation via fractional Riccati expansion methoden_US
dc.typeArticleen_US
dc.identifier.volume12
dc.identifier.issue4
dc.identifier.startpage1329
dc.identifier.endpage1335
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US
dc.indekslendigikaynakMathScineten_US
dc.indekslendigikaynakScopusen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess