dc.contributor.author | Singh, Udaya Pratap | en_US |
dc.date.accessioned | 2022-10-05T16:23:50Z | |
dc.date.available | 2022-10-05T16:23:50Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Singh, U. P. (2022). A new approach to find an approximate solution of linear initial value problems with high degree of accuracy. TWMS Journal Of Applied And Engineering Mathematics, 12(4), 1448-1458. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/4955 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/117-vol12no4/927 | |
dc.description.abstract | This work investigates a new approach to find closed form solution to linear initial value problems (IVP). Classical Bernoulli polynomials have been used to derive a finite set of orthonormal polynomials and a finite operational matrix to simplify derivatives in IVP. These orthonormal polynomials together with the operational matrix of relevant order provides a robust approximation to the solution of a linear initial value problem by converting the IVP into a set of algebraic equations. Depending upon the nature of a problem, a polynomial of degree n or numerical approximation can be obtained. The technique has been demonstrated through four examples. In each example, obtained solution has been compared with available exact or numerical solution. High degree of accuracy has been observed in numerical values of solutions for considered problems. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal Of Applied And Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Approximate solution | en_US |
dc.subject | Bernoulli polynomials | en_US |
dc.subject | Initial value problems | en_US |
dc.subject | Orthonormal polynomials | en_US |
dc.title | A new approach to find an approximate solution of linear initial value problems with high degree of accuracy | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 12 | |
dc.identifier.issue | 4 | |
dc.identifier.startpage | 1448 | |
dc.identifier.endpage | 1458 | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |
dc.indekslendigikaynak | Emerging Sources Citation Index (ESCI) | en_US |
dc.indekslendigikaynak | MathScinet | en_US |
dc.indekslendigikaynak | Scopus | en_US |