Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGüngör, Nihanen_US
dc.date.accessioned2023-01-02T15:12:45Z
dc.date.available2023-01-02T15:12:45Z
dc.date.issued2023-01
dc.identifier.citationGüngör, N. (2023). On solution of BG−Volterra integral equations. TWMS Journal Of Applied And Engineering Mathematics, 13(1), 21-36.en_US
dc.identifier.issn2146-1147en_US
dc.identifier.issn2587-1013en_US
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/5198
dc.identifier.urihttp://jaem.isikun.edu.tr/web/index.php/current/118-vol13no1/940
dc.description.abstractIn this study, we center upon obtaining the solution of linear bigeometric Volterra integral equations of the second kind in the sense of bigeometric calculus. The method of successive substitutions and resolvent kernel method are applied for solving the linear bigeometric Volterra integral equations of the second kind by using the concept of bigeometric integral. The necessary conditions for the bigeometric continuity and the uniqueness of the solution of linear bigeometric Volterra integral equations of the second kind are given in these methods. Finally, some numerical examples are presented to explain the procedure of the method of successive substitutions and resolvent kernel method.en_US
dc.language.isoenen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal Of Applied And Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectBigeometric calculusen_US
dc.subjectBigeometric Volterra integral equationsen_US
dc.subjectMethod of successive substitutionsen_US
dc.subjectBG−resvolvent kernelen_US
dc.titleOn solution of BG?Volterra integral equationsen_US
dc.typeArticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume13
dc.identifier.issue1
dc.identifier.startpage21
dc.identifier.endpage36
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US
dc.indekslendigikaynakMathScineten_US
dc.indekslendigikaynakScopusen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess