dc.contributor.author | Kumar, M. Kamal | en_US |
dc.contributor.author | Natarajan, Dhanasekar N. | en_US |
dc.contributor.author | Prasath GM, Arun | en_US |
dc.contributor.author | Ramadas, Giri | en_US |
dc.date.accessioned | 2023-04-05T08:11:19Z | |
dc.date.available | 2023-04-05T08:11:19Z | |
dc.date.issued | 2023-04 | |
dc.identifier.citation | Kumar, M. K., Natarajan, D. N., Prasath GM, A. & Ramadas, G. (2023). Roman and inverse roman domination in network of triangles. TWMS Journal of Applied and Engineering Mathematics, 13(2), 546-556. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/5481 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/119-vol13no2/988 | |
dc.description.abstract | In graph G (V, E), a function f : V ? {0, 1 2} is said to be a Roman Dominating Function (RDF). If ?u ? V, f(u) = 0 is adjacent to at least one vertex v ? V such that f(v) = 2. The weight of f is given by w(f) = P v?V f(v). The Roman Domination Number (RDN) denoted by ?R(G) is the minimum weight among all RDF in G. If V ?D contains a RDF f 1 : V ? {0, 1, 2}, where D is the set of vertices v, f(v) > 0, then f 1 is called Inverse Roman Dominating Function (IRDF) on a graph G with respect to the RDF f. The Inverse Roman Domination Number (IRDN) denoted by ? 1 R(G) is the minimum weight among all IRDF in G. In this paper we find RDN and IRDN of few triangulations graphs. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal of Applied and Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Domination number | en_US |
dc.subject | Roman domination number | en_US |
dc.subject | Inverse domination number | en_US |
dc.title | Roman and inverse roman domination in network of triangles | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 13 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 546 | |
dc.identifier.endpage | 556 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |
dc.indekslendigikaynak | Emerging Sources Citation Index (ESCI) | en_US |
dc.indekslendigikaynak | Scopus | en_US |