dc.contributor.author | Fabiano, Nicola | en_US |
dc.contributor.author | Kadelburg, Zoran | en_US |
dc.contributor.author | Mirkov, Nikola | en_US |
dc.contributor.author | Radenović, Stojan | en_US |
dc.date.accessioned | 2023-07-11T10:17:33Z | |
dc.date.available | 2023-07-11T10:17:33Z | |
dc.date.issued | 2022-07 | |
dc.identifier.citation | Fabiano, N., Kadelburg, Z., Mirkov, N. & Radenović, S. (2023). Solving fractional differential equations using fixed point results in generalized metric spaces of Perov’s type. TWMS Journal Of Applied And Engineering Mathematics, 13(3), 880-890. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/5591 | |
dc.identifier.uri | http://jaem.isikun.edu.tr/web/index.php/archive/121-vol13no3/1077 | |
dc.description.abstract | In 1964, A. I. Perov generalized the Banach contraction principle introducing, following the work of ¯D. Kurepa, a new approach to fixed point problems, by defining generalized metric spaces (also known as vector valued metric spaces), and providing some actual results for the first time. Using the recent approach of coordinate representation for a generalized metric of Jachymski and Klima, we verify in this article some natural properties of generalized metric spaces, already owned by standard metric spaces. Among other results, we show that the theorems of Nemytckii (1936) and Edelstein (1962) are valid in generalized metric spaces, as well. A new application to fractional differential equations is also presented. At the end we state a few open questions for young researchers. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal Of Applied And Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Fixed point | en_US |
dc.subject | Vector-valued metric | en_US |
dc.subject | Pseudometric | en_US |
dc.subject | Perov type | en_US |
dc.subject | F-contraction | en_US |
dc.subject | Fractional differential equation | en_US |
dc.title | Solving fractional differential equations using fixed point results in generalized metric spaces of Perov’s type | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 13 | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 880 | |
dc.identifier.endpage | 890 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Emerging Sources Citation Index (ESCI) | en_US |