Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBalachandar, S. Rajaen_US
dc.contributor.authorD., Umaen_US
dc.contributor.authorVenkatesh, Sivaramakrishnan Gopalakrishnanen_US
dc.date.accessioned2023-10-13T15:55:56Z
dc.date.available2023-10-13T15:55:56Z
dc.date.issued2023-10
dc.identifier.citationBalachandar, S. R., D., U. & Venkatesh, S. G. (2023). Shifted Legendre polynomial solutions of nonlinear stochastic Itô - Volterra integral equations. TWMS Journal Of Applied And Engineering Mathematics, 13(4), 1641-1657.en_US
dc.identifier.issn2146-1147en_US
dc.identifier.issn2587-1013en_US
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/5743
dc.identifier.urihttp://jaem.isikun.edu.tr/web/index.php/current/122-vol13no4/1144
dc.description.abstractIn this article, we propose the shifted Legendre polynomial-based solution for solving a stochastic integral equation. The properties of shifted Legendre polynomials are discussed. Also, the stochastic operational matrix required for our proposed methodology is derived. This operational matrix is capable of reducing the given stochastic integral equation into simultaneous equations with N+1 coefficients, where N is the number of terms in the truncated series of function approximation. These unknowns can be found by using any well-known numerical method. In addition to the capability of the operational matrices, an essential advantage of the proposed technique is that it does not require any integration to compute the constant coefficients. This approach may also be used to solve stochastic differential equations, both linear and nonlinear, as well as stochastic partial differential equations. We also prove the convergence of the solution obtained through the proposed method in terms of the expectation of the error function. The upper bound of the error in L² norm between exact and approximate solutions is also elaborately discussed. The applicability of this methodology is tested with a few numerical examples, and the quality of the solution is validated by comparing it with other methods with the help of tables and figures.en_US
dc.language.isoenen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal Of Applied And Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectNonlinear stochastic Itô - Volterra integral equationen_US
dc.subjectShifted Legendre polynomialen_US
dc.subjectStochastic operational matrixen_US
dc.subjectConvergence analysisen_US
dc.subjectError estimationen_US
dc.titleShifted Legendre polynomial solutions of nonlinear stochastic Itô - Volterra integral equationsen_US
dc.typeArticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume13
dc.identifier.issue4
dc.identifier.startpage1641
dc.identifier.endpage1657
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess