Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGopal, Nandhihalli Srinivasen_US
dc.contributor.authorJonnalagadda, Jagan Mohanen_US
dc.date.accessioned2024-01-05T16:58:05Z
dc.date.available2024-01-05T16:58:05Z
dc.date.issued2024-01
dc.identifier.citationGopal, N. S. & Jonnalagadda, J. M. (2024). Nabla fractional boundary value problem with a non-local boundary condition. TWMS Journal Of Applied And Engineering Mathematics, 14(1), 206-222.en_US
dc.identifier.issn2146-1147en_US
dc.identifier.issn2587-1013en_US
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/5863
dc.identifier.urihttps://jaem.isikun.edu.tr/web/index.php/archive/123-vol14no1/1167
dc.description.abstractIn this work, we deal with the following two-point boundary value problem for a finite fractional nabla difference equation with non-local boundary condition: (?(???(e) u(z) = p(z, u(z)), z ? Nfe+2, u(e) = g(u), u(f) = 0. Here e, f ? R, with f ?e ? N3, 1 < ? < 2, p : Nfe+2 ×R ? R is a continuous function, the functional g ? C[Nfe ? R] and ???(e) denotes the ?th- order Riemann–Liouville backward (nabla) difference operator. First, we derive the associated Green’s function and some of its properties. Using the Guo–Krasnoselskii fixed point theorem on a suitable cone and under appropriate conditions on the non-linear part of the difference equation, we establish sufficient conditions for the existence of at least one positive solution to the boundary value problem. Next, we discuss the uniqueness of the solution to the considered problem. For this purpose, we use Brouwer and Banach fixed point theorem respectively. Finally, we provide an example to illustrate the applicability of established results.en_US
dc.language.isoenen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal Of Applied And Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectNabla fractional differenceen_US
dc.subjectBoundary value problemen_US
dc.subjectPositive solutionen_US
dc.subjectFixed pointen_US
dc.subjectExistenceen_US
dc.titleNabla fractional boundary value problem with a non-local boundary conditionen_US
dc.typeArticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume14
dc.identifier.issue1
dc.identifier.startpage206
dc.identifier.endpage222
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess