Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSevugan, Raja Balachandaren_US
dc.contributor.authorD., Umaen_US
dc.contributor.authorGopalakrishnan, Venkatesh Sivaramakrishnanen_US
dc.date.accessioned2024-01-08T18:46:10Z
dc.date.available2024-01-08T18:46:10Z
dc.date.issued2024-01
dc.identifier.citationSevugan, R. B., D., U. & Gopalakrishnan, V. S. (2024). Numerical solution for anti-persistent process based stochastic integral equations. TWMS Journal Of Applied And Engineering Mathematics, 14(1), 368-381.en_US
dc.identifier.issn2146-1147en_US
dc.identifier.issn2587-1013en_US
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/5876
dc.identifier.urihttps://jaem.isikun.edu.tr/web/index.php/archive/123-vol14no1/1179
dc.description.abstractIn this article, we propose the shifted Legendre polynomial solutions for anti-persistent process based stochastic integral equations. The operational matrices for stochastic integration and fractional stochastic integration are efficiently generated using the properties of shifted Legendre polynomials. In addition, the original problem can be reduced to a system of simultaneous equations with (N + 1) unknowns in the function approximation. By solving the given stochastic integral equations, we obtain numerical solutions. The proposed method’s convergence is derived in terms of the error function’s expectation, and the upper bound of the error in L² norm is also discussed in detail. The applicability of this methodology is demonstrated using numerical examples and the solution’s quality is statistically validated by comparing it with the exact solution.en_US
dc.language.isoenen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal Of Applied And Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectStochastic Ito Volterra integral equationen_US
dc.subjectShifted Legendre polynomialen_US
dc.subjectStochastic operational matrixen_US
dc.subjectConvergence analysisen_US
dc.subjectError estimationen_US
dc.titleNumerical solution for anti-persistent process based stochastic integral equationsen_US
dc.typeArticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume14
dc.identifier.issue1
dc.identifier.startpage368
dc.identifier.endpage381
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess