dc.contributor.author | Mundadiya, Sneha | en_US |
dc.contributor.author | Parejiya, Jaydeep | en_US |
dc.contributor.author | Jariya, Mahesh M. | en_US |
dc.date.accessioned | 2024-04-02T18:47:11Z | |
dc.date.available | 2024-04-02T18:47:11Z | |
dc.date.issued | 2024-04 | |
dc.identifier.citation | Mundadiya, S., Parejiya, J. & Jariya, M. M. Root cube mean cordial labeling of Cn ∨ Cm, for n, m ∈ N. TWMS Journal Of Applied And Engineering Mathematics, 14(2), 460-472. | en_US |
dc.identifier.issn | 2146-1147 | en_US |
dc.identifier.issn | 2587-1013 | en_US |
dc.identifier.uri | http://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/5943 | |
dc.identifier.uri | https://jaem.isikun.edu.tr/web/index.php/current/124-vol14no2/1189 | |
dc.description.abstract | All the graphs considered in this article are simple and undirected. Let G = (V(G), E(G)) be a simple undirected Graph. A function f : V (G) ? {0, 1, 2} is called root cube mean cordial labeling if the induced function f? : E(G) ? {0, 1, 2} defined by f? (uv) = bq((f(u))3+(f(v))3/2c satisfies the condition |vf (i) ? vf (j)| ? 1 and |ef (i) ? ef (j)| ? 1 for any i, j ? {0, 1, 2}, where vf (x) and ef (x) denotes the number of vertices and number of edges with label x respectively and bxc denotes the greatest integer less than or equals to x. A Graph G is called root cube mean cordial if it admits root cube mean cordial labeling. In this article we have shown that the join of two cycles Cn ? Cm is not a root cube mean cordial and also we have provided graph which is root cube mean cordial. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Işık University Press | en_US |
dc.relation.ispartof | TWMS Journal Of Applied And Engineering Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Cycle | en_US |
dc.subject | Root cube mean cordial labeling | en_US |
dc.subject | Join of two graphs G ∨ H | en_US |
dc.subject | Labeling | en_US |
dc.subject | Corona of graph | en_US |
dc.title | Root cube mean cordial labeling of Cn ? Cm, for n, m ? N | en_US |
dc.type | Article | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.volume | 14 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 460 | |
dc.identifier.endpage | 472 | |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Emerging Sources Citation Index (ESCI) | en_US |