Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAl-Taweel, Younusen_US
dc.date.accessioned2024-07-20T09:00:34Z
dc.date.available2024-07-20T09:00:34Z
dc.date.issued2024-07
dc.identifier.citationAl-Taweel, Y. (2024). Uncertainty quantification of multivariate Gaussian process regression for approximating multivariate computer codes. TWMS Journal of Applied and Engineering Mathematics, 14(3), 1058-1067.en_US
dc.identifier.issn2146-1147
dc.identifier.issn2587-1013
dc.identifier.urihttps://jaem.isikun.edu.tr/web/index.php/archive/125-vol14no3/1237
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handleiubelgelik/6072
dc.description.abstractGaussian process regression (GPR) models have become popular as fast alternative models for complex computer codes. For complex computer code (CC) with multivariate outputs, a GPR model can be constructed separately for each CC output, ignoring the correlation between the different outputs. However, this may lead to poor performance of the GPR model. To tackle this problem, multivariate GPR models are used for complex multivariate deterministic computer codes. This paper proposes measures for quantifying uncertainty and checking the assumptions that are proposed in building multivariate GPR models. For comparison, we also constructed a univariate GPR model for each CC output to investigate the effect of ignoring the correlation between the different outputs. We found that the multivariate GPR model outperforms the univariate GPR model as it provides more accurate predictions and quantifies uncertainty about the CC outputs appropriately.en_US
dc.language.isoengen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal of Applied and Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectMultivariate Gaussian processen_US
dc.subjectMeasuresen_US
dc.subjectMultivariate deterministic computer codesen_US
dc.titleUncertainty quantification of multivariate Gaussian process regression for approximating multivariate computer codesen_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume14
dc.identifier.issue3
dc.identifier.startpage1058
dc.identifier.endpage1067
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess