Skew-cyclic linear codes over the finite ring Rp = Fp[v1, v2, · · · , vτ ]/‹v2i = 1, vivj − vjvi›: an in-depth exploration
Künye
Chatouh, K. (2025). Skew-cyclic linear codes over the finite ring Rp = Fp[v1, v2, · · · , vτ ]/‹v2i = 1, vivj − vjvi›: an in-depth exploration. TWMS Journal of Applied and Engineering Mathematics, 15(3), 511-525.Özet
This article introduces novel advancements in the realm of linear codes over the ring of integers modulo a prime, denoted as Rp = Fp[v1, v2, · · · , vτ ]/v2i =1, vivj − vj vi, with τ ≥ 1, p = qs and q is an odd prime. Specifically, we present a new Gray map and Gray images tailored for linear codes over Rp, facilitating efficient representation and manipulation of these codes. Building upon this foundation, the study delves into the characterization and properties of skew cyclic codes over Rp, a class of linear codes with intriguing mathematical structures. The investigation of skew cyclic linear code properties reveals new insights into their algebraic properties. This work not only contributes to the theoretical understanding of linear and skew cyclic codes over Rp but also suggests practical implications for coding theory.
Cilt
15Sayı
3Bağlantı
https://jaem.isikun.edu.tr/web/index.php/current/129-vol15no3/1344http://belgelik.isikun.edu.tr/xmlui/handleiubelgelik/6440
Koleksiyonlar
Aşağıdaki lisans dosyası bu öğe ile ilişkilidir: