Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorThanoonr, Shaymaa Riyadhen_US
dc.date.accessioned2025-05-08T05:28:06Z
dc.date.available2025-05-08T05:28:06Z
dc.date.issued2025-05-01
dc.identifier.citationThanoonr, S. R. (2025). Development and analysis of new nonparametric techniques for causal inference in observational studies. TWMS Journal of Applied and Engineering Mathematics, 15(5), 1287-1300.en_US
dc.identifier.issn2146-1147
dc.identifier.issn2587-1013
dc.identifier.urihttps://jaem.isikun.edu.tr/web/index.php/current/131-vol15no5/1407
dc.identifier.urihttp://belgelik.isikun.edu.tr/xmlui/handleiubelgelik/6762
dc.description.abstractThe lack of randomization methods in observational studies blocks researchers from reaching valid conclusions based on their data. The lack of randomisation techniques results in multiple experimental factors which appear in the research results. Research managers now use modern nonparametric analysis methods to reach superior causal results while gaining higher flexibility than traditional parametric procedures. This research develops a new analytical approach which merges matching techniques with instrument variables through kernel estimation methods for evaluation. The analytical procedures execute their functions without depending on specific distributional assumptions for discovering causal dependencies. Programmers who analyze complex observational data need to conduct theoretical evaluations and simulation tests to determine how specific causal data estimations are generated. The approaches make it possible to directly use them in epidemiology, economic research and social sciences to boost the estimated results from observed datasets.en_US
dc.language.isoengen_US
dc.publisherIşık University Pressen_US
dc.relation.ispartofTWMS Journal of Applied and Engineering Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectNonparametric causal inferenceen_US
dc.subjectKernel-based estimatorsen_US
dc.subjectInstrumental variable techniquesen_US
dc.subjectMarginal structural models (MSMs)en_US
dc.titleDevelopment and analysis of new nonparametric techniques for causal inference in observational studiesen_US
dc.typearticleen_US
dc.description.versionPublisher's Versionen_US
dc.identifier.volume15
dc.identifier.issue5
dc.identifier.startpage1287
dc.identifier.endpage1300
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakEmerging Sources Citation Index (ESCI)en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess